EFFECT OF GIBBERELLIC ACID CONCENTRATIONS AND RUNNERS' REMOVAL RATES ON YIELD AND QUALITY OF FRIGO STRAWBERRY PLANTATIONS

M. E. M. Ahmed⁽¹⁾, Amany A. Abd El-Latif⁽²⁾, I. A. Al-Ballat⁽¹⁾ and S. E. Salah⁽²⁾

⁽¹⁾Horticulture Department, Faculty of Agriculture, Tanta University.

⁽²⁾ Potato and Vegtatively Propagated Crops Department, Horticulture Research Institute, Agriculture Research Center.

Received: May 17, 2017 Accepted: Jul. 10, 2017

ABSTRACT: This experiment was carried out at a private farm in Shoney Village, Tanta, El-Gharbia Governorate, Egypt, during the two successive seasons of 2014/2015 and 2015/2016 to study the effect of runners' removal rates beside mothers full removal "no runners", five runners left, ten runners left and Without runners' removal and foliar spray of gibberellic acid 0 ppm, 25 ppm and 50 ppm and their interactions on vegetative growth, chemical properties, physiological traits, yield and quality of strawberry "Fortuna cv." planted under mixed planting system which fixed many runners beside mother plant with different density. Gibberellic acid (GA_3) was sprayed three time in 30 days intervals. The experimental design was a split plot in a randomized complete block design with three replications. The result indicated that foliar application of 25 ppm of gibberellic acid (GA₃) with removing all runners caused an increase in plant height, size, weight and shape index of the fruits. gibberellic acid (GA₃) at 25 ppm gave also the highest number of early fruits and early yield during both seasons, GA_3 also gave the highest value of TSS. vitamin C. number of leaves. number of fruits and the vield too. The study shows that it's better to use gibberellic acid (GA₃) with 25 ppm to spray the strawberry fruits with removing all the runners that exist beside the mother plant and that's to increase the vegetative growth and to improve the yield qualities.

Key words: Strawberry, Gibberellic acid (GA₃), Runners, Yield, Fruit quality, Frigo.

INTRODUCTION

Strawberry (Fragaria x ananassa Duch.) is an interspecific hybrid between the two species, Fragaria chiloensis and Fragaria virginiana (Darrow, 1965). Several cultivated forms of strawberry can be grouped as June and bearing. overbearing day-neutral (Hancock et al., 2005). It has traditionally been a popular delicious fruit for its flavor, taste, fresh use, freezing and processing. They are rich in ascorbic acid, secondary metabolites, simple sugars and acids (Pe'Rez et al., 1997). But are highly worsening, with soft texture, high softening rate and are highly susceptible to fungal attack (Shin et al., 2008). Carbohydrates in strawberry fruit are known to participate in many pathways related to fruit ripening, flavor development and color development (Souleyre et al., 2004). Total sugar contents

of different strawberry cultivars vary, the ratio of each specific sugar to total sugars is constant (Bood and Zabetakis, 2002). Strawberry is a good source of phenolics, which function as antioxidants and are highly valued in the human diet for their role in prevention of cardiovascular disease (CVD) and cancer (Kris-Etherton *et al.,* 2002). The production of strawberry in Egypt is 435506 kg/ha, according to (FAO, 2014).

Foliar application of gibberellic acid at 50, 200 mg/l had increased petiole length and leaf area of the strawberry plants (Paroussi *et al.*, 2002 a). In another study Kumar *et al.*, (2012) showed that strawberry plants which is treated with 75 ppm of gibberellic acid showed an increase in all vegetative growth characteristics *viz.*, plant height, petiole length, number of leaves, plant spread and leaf area Index. Foliar application of

strawberry plants with GA_3 increased TSS and Vitamin c in their fruits (Sharma and singh, 2009, Kazemi *et al.* 2014, and Thakur *et al.* 2015).

Regarding the effect of foliar application of gibberellic acid on yield and its components and fruit quality, Rasheed (2010) indicated that treating strawberry with GA₃ at 150 mg/l gave the longest fruits, while concentration of 300 mg/l gave the highest yield. Similar results were found by Uddin *et al.*, (2012) who showed that GA₃ at 75 ppm gave the best growth and yield of strawberry plants.

The negative effect of GA₃ at its higher concentration (200 mg/l) on total yield may be attributed to an increase in the percentage of aborted flowers and malformed fruit (nubbins), itself а consequence of the negative effect GA₃ at 200 mg/l may have on pollen germination (Voyiatzis and Paroussi, 2002 a).

Number and growth of tips were higher on plants without defoliation, and decreased 44.7% on twice-defoliated mother plants. The two-defoliation management did not reduce runner tip and the dry matter mass only on plants with rooted stolons, which produced runner tips 50% heavier Defoliation of mother plants bearing rooting stolons can be used to reduce their growth, without reducing the resurrection and growth of runner tips (Picio *et al.*, 2014).

(Klaas *et al.*, 2009) demonstrated that keeping the runners from plants has negative effect on the total yield in the first year. On the average over three years, there is a decrease in berry weight and an increase in the amount of grade two berries. In order to obtain a high quality yield, runners must be removed during harvest.

Therefore, this study was carried out to investigate the effect of GA_3 concentrations and number of runners left beside mother plants on growth yield and quality of strawberry.

MATERIALS AND METHODS

This study was conducted at a private farm in Shoney Village, Tanta, El-Gharbia Egypt Governorate, during the two successive seasons of 2014/2015 and 2015/2016, to study the effect of foliar application of GA₃ and runners' removal rates and their interaction on growth, yield and fruit quality of strawberry " Fragaria x ananassa " var. Fortuna. Soil was clay in texture, physical and chemical properties of experimental are presented in Table (1).

Strawberry plants were planted on September 8th and 10th in the first and the second seasons, respectively. The experimental unit area was 12 m². It contained 5 rows with 3 m² in length and 80 cm wide. The frigo transplants were planted 25 cm between each other. Seedlings were transplanted in such a way that the crown dos not go much under the soil or doesn't remain in shallow. All agricultural practices for cultivation were performed as recommended by Ministry of Agriculture and land Reclamation.

				Chei	mical ai	nalysi	S					Phys	sical
Ca	ations	(meq⁻¹)		Ar	nions (m	neq ⁻¹)		n	Macro utrier (ppm)	nt	(meq⁻¹)	anal	
Na⁺	K⁺	Mg ⁺⁺	Ca ⁺⁺	Hco ₃ ⁻	Co ₃	Cl	So ₄	Ν	Ρ	К	Caco ₃ ⁻	рΗ	E.C
2.6	0.1	0.1	0.2	0.1		1.5	1.4	80	45	640	1.7	7.8	0.3

 Table (1): Some chemical and physical properties of the experiment soil according to Ryan et al. (1996)

The experimental design was a split-plot design with 3 replications. Runners' removal rates were in the main plots 4 treatments; full removal "no runners", five runners left, ten runners left and without runners' removal and the sub plot consisted of three different concentrations of gibberellic acid (without GA₃, 25 and 50 ppm) was sprayed after one month from transplant for three time in 30 days intervals.

Data recorded The following data were recorder Vegetative growth:

Six plants were taken from each experiential plot to determine plant height (cm) and number of leaves plant⁻¹ at 30 days from transplant.

Yield and it's components

Fruits from six plants were harvested to determine average of weight, length and diameter of fruit at 130 days from transplant. Total number of fruits. Fruits were harvested at 130 days from transplant, when the fruit reached at harvesting stage. In harvesting period the fruits turn red in color with waxy layer. Marketable fruits were harvested at 2-3 day intervals during the growing season, counted, and weighed to record average fruit weight. The early yield/plant was determined as weights of all harvested fruit during the first four harvests. Total yield/ plant was calculated for all fruits harvested all one the season.

Chemical constituents

Six full mature fruits were collected randomly from each treatments in the middle of the growing season at 130 days from transplant to determine the chemical fruits quality i.e. Vitamin C (mg/100 g) that was determined in juice using 2, 6dichlorophenol indophenol and it was expressed as mg/100 ml juice as described by (A.O.A.C., 1990), and TSS (%) was determined using a hand refractometer (abb model) and the results were expressed as brix (Cheour et al., 1991).

Statistical analysis

Data were analyzed by MSTATC computer software program adopted by Bricker, (1991) using ANOVA with the least significant difference (LSD) at the $P \le 0.05$.

RESULTS AND DISCUSSION Vegetative growth

Form data of Table (2) it could noticed that, runner's removal rates had significant increase on the plant height and number of leaves. The highest plant and number of leaves were obtained by full removal "runners" for mother, in both seasons. And the highest plant height was recorded with five runner's left for runners, in both seasons. While, the highest of leave number was with ten runner's left or without runner's, in the season only. These trends of results are similar with (Klaas *et al.*, 2009).

Data presented in Table (2) showed that the effects of gibberellic acid (GA₃) on vegetative growth characters, Application of GA₃ at 25 ppm had significant effect on plant height and number of leaves. Plant height for mother or runners was significantly increased, in both seasons. While, number of leaves was significantly increased in the first season for runners and in the second season for mother. The result were in accordance with Kumar et al., (2012) and Kazemi et al. (2014). Dale et al., (2008) found that may be caused by GA₃, which can induce stolons formulation by activating dormant buds to grow or by flower but initiation. preventing the Waithika et al., (1978) also reported that leaf number was also increased with increasing the concentration of Gibberellic acid. This might be attributed to the fact that GA₃ supply induces cell elongation and cell division Rademabher, (2000). The increase may be due to the effect GA₃ promotes shoot growth by stimulating rapid cell division and elongation of plant stem and shoots Turner, (1963).

Data tabulated in Table (2) show also that, interactions between runners' removal

Characters		Plant height (cm)	ght (cm)	Plant height (cm)	nt (cm)	Number of leaves	eaves	Number of leaves	eaves
	•	2014/2015 season	5 season	2015/2016 season	i season	2014/2015 season	season	2015/2016 season	season
	Treatments	Mother	Runners	Mother	Runners	Mother	Runners	Mother	Runners
Runners' removal	Full removal "no runners"	11.91a	P00'0	14.37a	P00'0	9.41a	0.00c	7.27a	0.00
	Five runners left	9.12b	7.45a	12.90b	4.388	6.21b	1.55b	5.83bc	1.91
	Ten runners left	8.22c	6.86b	11.18c	3.81b	4.98c	2.00a	5.58c	2.00
	Without runners' removal	7.420	6.50b	10.91c	3.342c	4.74c	2.33a	6.16b	1.91
	L. S. Dat 0.05 %	0.813	0.298	0.532	0.167	0.412	0.384	0.444	N.S
Gibberellic acid	WithoutGAs	8.82b	5.00b	11.70b	2.76c	6.27	1.30a	5.90b	0.87c
	GÅs at 25 ppm	9.36a	5.30a	13.00a	3.06a	6.35	1.20b	6.28a	1.31b
	GA ₃ at 50 ppm	8.79b	4.97b	12.23b	2.88b	6.39	1.75a	5.86b	2.18a
	L. S. D at 0.05 %	0.526	0.256	0.489	0.100	N.S	0.144	0.399	0.218
Full removal "no runners"	Without GA ₃	12.30a	P00'0	13.88b	800.0	9.73a	0.00e	7.75a	0.00f
Full removal "no runners"	GA _a at 25 ppm	12.30a	P00'0	15.15a	0.00g	9.30a	0.00e	6.75bc	0.00f
Full removal "no runners"	GA ₃ at 50 ppm	11.13b	P00'0	14.07b	0.00g	9.20a	0.00e	7.32ab	0.00f
Five runners left	Without GA ₃	9.16c	7.53a	12.25od	4.20b	5.60cd	1.33c	5.75de	1.25de
Five runners left	GA ₃ at 25 ppm	9.360	7.56a	13.82b	4.52a	6.63bc	1.330	6.50c	1.75bc
Five runners left	GA _a at 50 ppm	8.83c	7.26a	12.63c	4.428	6.66b	2.00b	5.25e	2.708
Ten runners left	Without GA ₃	8.50cd	7.16ab	10.80ef	3.65de	5.00d	3.00a	5.75de	1.00e
Ten runners left	GA _a at 25 ppm	8.50cd	7.10ab	11.65cde	3.97c	4.93d	1.00d	5.50e	2.00b
Ten runners left	GA _a at 50 ppm	7.66de	6.33c	11.07ef	3.82cd	5.03d	2.00b	5.50e	3.00a
Withoutrunners' removal	Without GA ₃	7.43de	6.66bc	10.20f	3.22f	4.76d	3.00a	6.75bc	1.25de
Without runners' removal	GA _a at 25 ppm	7.30e	6.53c	11.38de	3.52e	4.80d	1.00d	6.37od	1.50od
Without runners' removal	GA _a at 50 ppm	7.53de	6.30c	11.15ef	3.27f	4.66d	3.00a	5.37e	3.00a
	L.S. Dat 0.05 %	1.050	0.513	0 977	0 206	0.837	0 289	0.698	0 437

M. E. M. Ahmed, et al.,

rates and foliar application of GA₃ was found to be significant effect for vegetative growth for mother and runners, in both seasons. The highest values of plant height and number of leaves for mother were in treatment full removal "no runners" + without GA₃ with no significant difference in treatment full removal "no runners" + GA3 at 25 ppm in the first season. While the maximum values of plant height for runners was in treatment five runners left + with GA₃ with no significant effect difference in treatments five runners left + GA₃ at 25 + 50 ppm, in addition to number of leaves for runners increased in treatment ten runners left + without GA₃, in the first season. On the other hand the plant height and number of leaves for mother increased in treatments full removal "no runners" + GA3 at 25 ppm and full removal "no runners" + without GA₃ in the second season, respectively. And treatments five runners left + GA₃ at 25 + 50 ppm gave highest value on plant height for runners, in the second season. As for number of leaves for runners the maximum value was in treatment five runners left + GA_3 at + 50 ppm, in the second season.

Yield and it's components

It is clear from data tabulated in Table (3 and 4) reflect the effects of runners' removal rates on yield and it's components for mother and runners in both seasons. Fruit volume for mother in the first season, fruit weight for the runners, fruit shape index and number of fruits in both seasons were no significant effect. While treatment ten runners left gave the highest values, fruit volume for runners in the first season, fruit volume for mother in the second season, fruit weight for mother in both seasons and fruit shape index for mother in the first without significant difference season between treatments five runners left and without runners' removal, were highly significant effect. Conversely, the maximum values were in treatment full removal' "no runners" for number of fruits and early yield for mother in both seasons, whatever total

yield for mother in the first season. In addition to early and total yield for runners gave maximum value in treatment five runners left in both seasons and total yield for mother were highly significant effect in the second season. The results are in agreement Portz and Nonnecke, (2009) and Picio et al., (2014). In general among all cultivars, average berry size and total berry vield were higher when runners and flowers were removed until the end of July, mother plant weights were generally highest for to smaller plants with Tribute. Due Seascape and Albion, producers may want to plant the strawberry plants closer together, such as 6 in. to 9 in. instead of 12 in. to increase overall production within an area Portz and Nonnecke, (2009).

Data tabulated in Tables (3 and 4) showed that, there was no significant effect, fruit volume for runners in the first season and shape index for mother in the first season and the runners in the second season. While the highest values for foliar application GA₃ at 25 ppm were highly significant effect on fruit volume without significant difference between treatment without GA₃, in addition to number of fruits and total yield for runners. Whatever the foliar application without GA₃ were highly significant effect on fruit weight and early yield for the mother and runners in both seasons, in addition to, number of fruits and total yield for mother in both seasons. While the highest values on fruit volume for mother and runners, shape index for the mother in the second season and the runners in the first season. These results are similar with Hossan et al., (2010). GA₃ stimulated rapid cell division and elongation in plant stems and shoots Turner, (1963). El-Shabasi et al., (2008) reported that GA₃ application increased petiole length. Thompson and Guttride, (1959) found an increase in length and upright arowth of petioles and concluded that GA3 can substitute for promoting substances that are growth produced normally under long days, the increase in size and weight with the

Characters			Fruit volume (cm²)	ne (cm²)			Fruit weight	eight (g)		Ē	Fruit shape index	index (T/d)	6
	•	2014/2015	5 season	2015/20	2015/2016 season		2014/2015 season	2015/201	2015/2016 season	2014/2015 season	5 season	2015/2016 season	2016 501
	Treatments -	Mother	Runners	Mother	Runners	Mother	Runners	Mother	Runners	Mother	Runners	Mother	Runners
Runners' removal F	Runners' removal Full removal "no runners"	26.76	0.00c	23.22d	L	28.56b	0.000	25.31b		1.167b		1.18b	
	Five runners left	25.11	18.896	27.420	19.17.c	20.02	52.72	17.690		1.31a	1.36	1.35a	.
2	Ten runners lett	25.11	19.58b	38.75b		25.51b	20.00	31.018 19.80c		1.31a		1.35a	
Α	without runners removal L. S. D at 0.05 %	N.S	1.072	1.411		3.825	N.S	3.687		0.089		0.101	_
Gibberellic acid	Without GA ₆	25.48b	15.08	31.27c	Ľ.	35.59a	44.28a	26.04a	I 1	1.28	1.00b	1.29ab	1.03
	GA _w at 25 ppm	26.67a	14.58	32.76b		32.37b	36.15b	24.83b		1.29	1.06ab	1.25b	1.8
	GA ₆ at 50 ppm L. S. D at 0.05 %	25.58b 1.032	14.85 N. S	34.90a 1.084	17.92a 0.515	25.21c 3.029	36.28b 3.911	19.94b 2.259	29.65b 0.922	1.26 N. S	1.08a 0.077	1.35a 0.061	1. S
Full removal "no runners"	Without GA ₆	28.27ab	P00'0	24.75e	0.00f	35.40c	0.000e	30.67b		1.13d	0.000	1.17cd	0.000
		29.33a	P00'0	26.05e	0.00	27.83d	0.000	25.00cde		1.17cd	0.00	1.12d	0.00
Full removal no runners		22.67d	0.00	18.85f		22.43de	0.000	20.25efg		1.20bcd	0.00	1.25bcd	0000
Full removal "no rumers"	GA ₆ at 50 ppm	22.67d	17.67c	18.45f		28.30d	53.00c	24.88cde	40.80c1	1.26abod	1.23b	1.30abc	1.35ab
Five runners left	Without GA ₆	25.67c	19.33abc	23.90e		13.23	35.10d	12.43h	29.60d	1.30abcd	1.40ab	1.35ab	1.47a
Five runners left	GA ₆ at 25 ppm	26.00bc	21.00ab	41.40bc		53.00b	63.97ab	28.42bc	51.00ab		1.43a	1.30abc	1.42a
Five runners left		27.00bc	21.00ab	41.75b		59.97a	56.73bc	40.10a	47.53b1	2	1.36ab	1.25bcd	1.35ab
Ten runners left		27,0015	20.00ab	44.45a		37.43c	37.97d 26.30bcd	26.30bcd	31.88d		1.43a 1.23ab	1.37ab	1.45a
Ten runners left	GA ₆ at 25 ppm	24.67cd	18.00c	39.350		28.43d	52.77c	21.77def	46.95b		1.50a	1.30abc	1.40a
Ten runners left		20.0/C	19.0/bc	30.400	24./Ubc 1.021	ZZ.43de 6.059	P01.15	1/.42tg	31.6/d1	1.2babcd 0.181	1.438	1.3/ab	1.220
Without runners' removal	Without GA ₆	200		3						5	5		
Without runners' removal	GA ₆ at 25 ppm												
Without runners' removal	GA ₆ at 50 ppm												

M. E. M. Ahmed, et al.,

	Characters	Number of fruits/	uits/ m²	Number of fruits/ m ²	, et	Early yield (g/m°)		Early yield (g/m [*])	2	otal yield (g/m*)	Total yi	otal yield (g/m²)
Ireatments	-	2014/2015 season	eason	ZUT5//ZUT6 season		ZUT4/ZUT5 season		2015/2016 season	R 5	ZUT4/ZUT5 Season	2015 See	2015/2016 season
	-	Mother RunnersMother	Mother	Kunners	Mother	Kunners Mother	Mother	Kunners	Mother	Kunners Mother	Mother	Kunners
Runners' removal	Full removal "no runners"	180.7a 0.000	185.10a	0.000	518.0a	0.000c	961.9a	P000'0	2743.0a	0.000c	2833b	0.000c
	Five runners left	101.6b 120.6	106.69b	125.91	313.0b	29.68a	335.7ab	34.46a	1816.0b	411.0a	1920a	429.8a
	Ten runners left	78.09c 120.3	83.46c	125.39	248.2c	19.63b	257.2ab	21.91b	1077.0c	195.3b	1170c	188.7b
	Without runners' removal	77.22c 120.2	82.39c	125.08	166.5d	20.03b	191.8b	20.46c	1007.0d	198.7b	1109d	193.9b
	L. S. D at 0.05 %	6.104 N.S	4.229	N.S	27.00	2.40	680.30	0.72	62.13	21.41	14.74	31.87
Gibberellic acid	Without GA ₆	132.4a 86.09b	137.40a	89.82b	385.9a	18.39a	667.1a	20.54a	2037a	188.9c	2140a	188.3b
	GAs at 25 ppm	104.9b 100.3a	109.90b	104.16a	318.4b	16.73b	397.3b	19.01b	1606b	214.4a	1704b	219.5a
	GA ₆ at 50 ppm	90.89c 84.51b	84.51b 95.93c	88.30b	230.0c	16.89ab	255.5a	18.06b	1339c	200.4b	1430c	201.5ab
	L. S. D at 0.05 %	3.433 2.164	2.533	1.657	18.90	1.52	528.9	1.01	52.69	9.36	41.31	18.26
Full removal "no runners' Without GA _s	Without GA ₆	231.4a 0.000g	234.60a	0.000h	591.4a	0.000f	610.9b	0.000f	2876a	D.000f	2975.0a	0.000e
Full removal "no runners" GA ₆ at 25 ppm	GA ₆ at 25 ppm	175.7b 0.000g	181.01b	0,000h	567.0a	0.000f	1847.0a 0.000t	0.000f	2786a	p.000f	2879.0b	0.000e
Full removal "no runners"	GA ₆ at 50 ppm	135.0c 0.000g	139.69c	0,000h	395.7c	0.000f	427.6b	0.000f	2568b	p.000f	2644.0c	p.000e
Five runners left	Without GA ₆	108.1d 81.15f	113.20d	85.62g	528.9b	27.47b	547.0b	31.70b	2355c	347.8c	2456.0d	366.9b
Five runners left	GA ₆ at 25 ppm	101.1e 144.8a	106.32e	150.15a	212.1e	22.37c	239.2b	26.52c	P2221	452.5a	1873.0e	471.5a
Five runners left	GA ₆ at 50 ppm	95.52ef 135.9b	100.54f	141.95b	198.0ef	39.20a	220.9b	45.15a	1317f	432.7b	1432.0h	451.0a
Ten runners left	Without GA ₆	96.67ef 129.6c	129.6c 102.65ef	134.68d	210.7e	23.77c	199.9b	25.85c	1500e	204.0d	1615.0f	208.3c
Ten runners left	GA ₆ at 25 ppm	71.04g 132.2bc75.93g	75.93g	137.19od	326.7d	23.80c	344.2b	26.08c	978.4g	201.6d	1070.01	200.4c
Ten runners left	GA ₆ at 50 ppm	66.56g 99.27e 71.78g	71.78g	104.29f	207.3ef	11.33e	227.4b	13.80e	753.1h	180.2e	826.3j	157.3d
Without runners' removal	Without GA ₆	93.65f 133.6bc99.14f	99.14f	138.98bc	212.7e	22.33c	231.4b	24.63cd	1417ef	204.0d	1516.0	178.2cd
Without runners' removal	GA ₆ at 25 ppm	71.56g 124.3d 76.33g	76.33g	129.30e	167.9f	20.73c	197.8b	23.45d	884.4g	203.6d	817.5	205.9c
Without runners' removal	GA ₆ at 50 ppm	66.46g 102.8e 71.72g	71.72g	106.95f	119.0g	17.03d	146.1b	13.30e	719.2h	188.6de	82.62	197.6c
	L. S. D at 0.05 %	6.866 4.329	5.065	3.314	37.80	3.04	1058	2.03	105.40	18.73	82.62	36.52

401

application of GA_3 may be due to increased size of plant and leaf, and higher chlorophyll content which in turn may have enhanced the photosynthetic activities.

From the obtained data Table (3 and 4) it could noticed that, the interactions between runners' removal rates and foliar application of GA₃. The highest values on fruit volume for mother in the first season and early yield for mother in treatment full removal "no runners" + GA₃ at 25 ppm in the second season, moreover there found highly significantly effect on fruit volume and number of fruits for runners in the second season. Number of fruits for mother in both seasons and total yield for mother in the second season in treatment full removal "no runners" + without GA₃. Early yield and total yield was significant effect in treatment full removal "no runners" + without GA₃ without significant difference between this treatment full removal "no runners" + GA₃ at 25 ppm, in the first season. In addition to the treatment ten runners left + GA₃ at 25 ppm gave the maximum values on fruit weight for mother in both season. While fruit weight and early yield for runners was highly significant effect in treatment five runners left + GA₃ at 50 ppm in both seasons. Finally fruit weight, number of fruits and total yield for runners, in both seasons and fruit shape index for runners, in the second season was highly significant effect in treatment five runners left + GA₃ at 25 ppm. While fruit shape index for mother was highly significant effect in treatment ten runners left + without GA₃, in both season. In addition to fruit weight for runners was highly significant in treatment without runners' removal + without GA₃, in both season. While fruit shape index for runners gave highest value in treatment without runners' removal + GA₃ at 25 ppm, in the first season.

Chemical constituents

Data presented in Table (5) clearly show that the effects of runners' removal rates chemical constituents. The highest values on vitamin C and TSS for mother was recorder with treatment full removal "no runners" in both seasons, in addition to for runners on vitamin C it's no significant effect in both seasons. While TSS for runners was highly significant in treatment, five runners left in the first season, while the runners it's no significant in the second season. The result were accordance with Klaas *et al.*, (2009).

It is guite clear from data in Table (5) that vitamin C content of fruit for mother and runners were significant effect with application of water in both seasons. While TSS was no significant for mother and runners in both seasons. The result are confirmed with Sharma and Singh, (2009), Ouzounidou et al., (2010), Kazemi et al., (2014) and Thakur et al., (2015). Perkins-Veazie, (1995) reported that SSC (soluble solid content) of strawberry fruits varied from 4-11% depending on cultivars and environment. The combined application of GA₃ with plant growth promoting produce rhizobacteria can effects on ascorbic acid contents of strawberries and that may be due to their synergetic effect.

As for interaction between runners' removal rates and foliar application of GA₃ on vitamin C and TSS. When treated the mother by treatment full removal "no runners" + without GA₃ on vitamin C and TSS was highly significant effect, in both seasons. While vitamin C for runners gave highest value in treatment five runners left + without GA₃, in the both seasons. In addition to TSS for runners was height significant effect in treatment five runners left + GA₃ at 25 ppm.

	Characters	Vitamin C	Vitamin C - (mg/100 g)	Vitamin C - (mg/100 g)	mg/100 g)	TSS (%	6 %	TSS ((%)
		2014/20	2014/2015 season	2015/201	2015/2016 season	2014/20	2014/2015 season	2015/20	2015/2016 season
Treatments		Mother	Runners	Mother	Runners	Mother	Runners	Mother	Runners
Runners' removal	Full removal "no runners"	47.82a	0.000	61.28a	0.000	4.54a	0.000c	9.317a	00.0
	Five runners left	36.16c	57.71	53.91b	57.71	4.21ab	4.34a	8.80ab	9.02
	Ten runners left	41.33b	57.12	63.78a	57.12	4.04ab	4.12ab	8.417b	8.86
	Without runners' removal	38.50c	56.69	56.47b	56.69	3.94b	3.89b	8.275b	8.73
	L. S. D at 0.05 %	2.462	N. S	4.567	N. S	0.524	0.239	0.672	N. S
Gibberellic acid	WithoutGAs	47.45a	44.47a	59.75a	44.47a	4.20	3.092	8.875	6.581
	GAa at 25 ppm	39.77b	42.88ab41.	59.23ab	42.88ab	4.15	3.217	8.631	6.756
	GA ₃ at 50 ppm	35.64c	29b	57.60b	41.29b	4.10	2.958	8.606	6.631
	L. S. D at 0.05 %	2.813	2.158	1.941	2.158	N. S	N. S	N. S	N. S
Full removal "no runners"	Without GA ₃	72.07a	P000'0	62.55a	P000'0	5.13a	0.000c	9.400a	0.000
Full removal "no runners"	GA ₃ at 25 ppm	31.13e	P000'0	61.13ab	P000'0	4.10b	0.000c	9.275a	0.000
Full removal "no runners"	GA ₃ at 50 ppm	40.27bcd	P000'0	60.15abc	P000'0	4.40ab	0.000c	<u>9.275a</u>	0.000
Five runners left	WithoutGAs	39.70cd	50.00s58.08s	54.08de	60.00s	4.26ab	4.333a	9.125ab	8.900ab
Five runners left	GA ₃ at 25 ppm	35.60e	q	56.63od	58.08abc	4.43ab	4.500a	8.625abod	9.250a
Five runners left	GA ₃ at 50 ppm	33.17e	55.05bc	51.03e	55.05bc	3.93b	4.200a	8.675abc	8.925ab
Ten runners left	Without GA ₃	42.53bc	59.68ab57.42	64.15a	59.68ab	3.60b	3.867ab	8.325bod	8.850ab
Ten runners left	GA ₃ at 25 ppm	46.33b	abc	63.03a	57.42abc	4.13b	4.200a	8.825abc	8.925ab
Ten runners left	GA ₃ at 50 ppm	35.13de	54.25c	64.18a	54.25c	4.40ab	4.300a	8.100cd	8.25ab
Without runners' removal	Without GA ₃	35.50de	58.22abc56.0	56.15od	58.22abc	3.80b	4.167a	8.650abod	8.575b
Without runners' removal	GA ₃ at 25 ppm	46.00b	Dabc55.85abc	58.22bod	56.00abc	3.96b	4.16Za	7.800d	8.850ab
Withoutrunners' removal	GA ₃ at 50 ppm	34.00de	4.316	55.05de	55.85abc	4.06	3.333b	8.375bod	8.775ab
	L. S. Dat 0.05 %	5.625		3.882	4.316	0.831	0.584	0.758	0.466

Effect of gibberellic acid concentrations and runners' removal rates on

REFERENCES

- A. O. A. C. (1990). Association of Official Analytical Chemists. Official methods of analysis. Hortwitz, W. (ed.), 13th ed. Benjamin Franklin Station, Washington, D.C.: 1015 p.
- Bood, K. G. and I. Zabetakis (2002). The biosynthesis of strawberry flavor, biosynthetic and molecular biology studies, Journal of Food Science 67 (1): 2-8.
- Bricker, B. (1991). MSTATC: A micro computer program from the design management and analysis of agronomic research experiments. Michigan State University. USA.
- Cheour, F., C. Willemot, J. Arul, D. Y. Makhlouf and Y. Desjardins (1991).
 Postharvest response of two strawberry cultivars to foliar application of CaCl₂.
 Hort Science, 26 (9): 1186- 1188.
- Dale, A., C. Don and K. Craig (2008). Gibberellic acid increase runner production in day neutral strawberries. Hort Sci. 31(7):1190 – 1194.
- Darrow, G. M. (1965). The strawberry history breeding and physiology, 1st ed. Canada: Holt, Rinechart and Winston of Canada, Ltd; 435 p.
- El-Shabasi, M. S. S., M. E. Ragab, I. I. El-Oksh and Y. M. M Osman (2008). Response of strawberry plants to some growth regulators. Acta Hort. 2: 842
- FAO STAT (2014). Food and Agriculture Organization. Website: <http://faostat.fao.org>.
- Foda, S. A., H. H. Nassar and S. A. Monsoor (1979). Effect of some growth regulators on runner production and yield ofstrawberry. Agric. Res. Review Hort., 57: 119-125.
- Garner, L, K. Grant, Z. Yusheng, K. Toan and C. Lovatt (2009). Response of evergreen perennial tree crops to gibberellic acid is crop load-dependent: GA3 increases yield and fruit size of 'Hass' avocado only in the on-crop year of an alternate bearing orchard. J. Am. Soc. Hort. Sci. 133: 3–10.

- Hancock, J. F. (2005). Strawberry Growth, Development and Diseases, Cabi Publishing. Pp: 257.
- Hossan, M. D. J. (2010). Response of strawberry germplasm to gibberellic acid concentrations, MSc in Horticulture, Department of Horticulture Sher. E. Bangla Agricultural University, 65 p.
- Kazemi, M., Y. Researchers, E. Club and K. Branch (2014). Pre-harvest foliar application of paclobutrazol, boric acid and gibberellic acid influences vegetative growth, reproductive characteristics and quality of strawberry (*Fragaria x ananassa* Duch. cv. Camarosa) Bull. Env. Pharmacol. Life Sci., Vol. 3 (4): 183-187.
- Klaas, L., K. Kahu, A. Libek and K. Hedi (2009). Effects of foliar applied fertilizers and removal of runners on the yield and berry quality of strawberry cultivar 'Polka' on Black Plastic Mulch, Sodininkyste Ir Daržininkyste., 28(4) 71-80.
- Kris-Etherton, P. M., K. D. A. Bonanome,
 S. M. Coval, A. E. Binko-ski, K. E.
 Hilpert, A. E. Griel and T. D. Etherton (2002). Bioactive compounds in foods:
 Their role in the prevention of cardiovascular disease and cancer. Am, J Med.113: 71-88.
- Kumar, R., P. Baksh, J. N. Srivastava and S.
 Sarvanan (2012). Influence of plant growth regulators on growth, yield and quality of strawberry (*Fragaria x ananassa* Duch) cv. Sweet Charlie, The Asian Journal of Horticulture 7 (1): 40-43.
- Paroussi, G., D. G. Voyiatzis, E. Paroussis and P. D. Drogoudi (2002a). The effect of GA₃ and photoperiod regime on growth and flowering in strawberry. Acta Hort. 567:273-276.
- Paroussi, G., D. G. Voyiatzis, E. Paroussis and P. D Drogoudi (2002b). Growth, flowering and yield responses to GA₃ of strawberry grown under different environmental conditions. Sci Hortic. 113-96:103.
- Pe'Rez, A. G., R. Olı'As, J. Espada, J. M. Olı'As and C. Sanz (1997). Rapid

Effect of gibberellic acid concentrations and runners' removal rates on

determination of sugars, nonvolatile acids, and ascorbic acid in strawberry and other fruits. Journal of Agricultural and Food Chemistry, 45: 3545–3549.

- Perkins-Veazie, P. (1995). Growth and ripening of strawberry fruit. Horticultural reviews.17: 257-297.
- Picio, M. D., J. L. Andriolo, F. L. Cardoso, M.
 A. Lerner and J. M. Souza (2014).
 Defoliation of strawberry mother plants for the production of runner tips pesq.
 Agropec. Bras. brasília, 49(7): 515-520.
- Portz, D. and G. R. Nonnecke (2009). Effect of removal of runners and flowers from day-neutral strawberries on time of harvest and total yields. Iowa State Research Farm Progress Reports, Agricultural Science Commons, 9 (36) 325 - 328.
- Rademabher, (2000). Growth retardants: Effect on gibberellins biosynthesis and other metabolic pathway. Ann. Rev. Pl. Physiol. Pl. Mol. Biol., 51: 501-531.
- Rasheed, H. N. (2010). Effect of gibberellic acid and benzyladenine applications on growth and yield of strawberry plant (*Fragaria × ananassa* Duch.), University of Baghdad, PhD thesis.
- Ryan, J., S. Garabet, K. Harmsen and A. Rashid (1996). A soil and plant analysis manual. Adapted for the West Asia and North Africa Region. International Center for Agricultural Research in the Dry Areas, ICARDA, Aleppo, Syria 140 pp.
- Seema, K. and K. Mehta (2015). Rhizobacteria and GA₃ on plant growth, fruiting and soil health of strawberry (fragaria x ananassa duch.) Cultivar chandler Parmar University of Horticulture.231, PHd.
- Sharma, R. R. and R. Singh (2009). Gibberellic acid influences the production of malformed and button berries, and fruit yield and quality in strawberry (*Fragaria x ananassa* Duch.). Scientia Hort. 119 (4):430-433.

- Shin, Y., J. A. Ryu, R. H. Liu, J. F. Nock and C. B. Watkins (2008). Harvest maturity, storage temperature and relative humidity affect fruit quality, antioxidant contents and activity, and inhibition of cell proliferation of strawberry fruit. Postharvest Biol. Technol. 49, 201-209.
- Souleyre, E. J. F., P. P. M. Iannetta, H. A. Ross, R. D. Hancock, L. V. T. Shepherd, R. Viola, M. A. Taylor and H. V. Davies (2004). Starch metabolism in developing strawberry (*Fragaria x ananassa*) fruits. Physiologia Plantarum, 121:369-376.
- Tehranifar, A. and N. H. Battey (1997). Comparison of the effects of GA₃ and chilling on vegetative vigour and fruit set in strawberry. Acta Hortic 439:627-631.
- Thakur, S., K. Mehta and R. S. Sekhar (2015). Effect of GA₃ and plant growth promoting rhizobacteria (pgpr) on growth, yield and fruit quality of strawberry, *Fragaria x ananassa* Duch cv. Chandler. International Journal of Advanced Research, 3(11): 312 – 317.
- Thompson, P.A. and C.G. Guttride (1959). Effect of gibberellic acid on the initiation of flowers and runners in the strawberry. Nature, 184: 72-73.
- Turner, J. N. (1963). Application of gibberellic acid to strawberry plants at different stages of development. Nature 197: 95-96.
- Uddin, A. F., M. J. Hossan, M. S. Islam, M. K. Ahsan and H. Mehraj (2012). Strawberry growth and yield responses to gibberellic acid concentrations. *J. Expt. Biosci, 3(2):51-56.*
- Voyiatzis, D. G. and G. Paroussi (2002). Factors affecting the quality and in vitro germination capacity of strawberry pollen. J. Hort. Sci. Biot. 77, 200–203.
- Waithaka, K., B. E Struckmeyer and M. N.Dana (1978). Growth substances and growth of strawberry stolons and leaves.J. Amer. Soc. Hort. Sci. 103: 480-482.

تأثير تركيزات حمض الجبريليك ومعدلات إزالة المدادات على محصول وجودة زراعات الفرولة المبردة

محمد السيد محمد أحمد⁽¹⁾ ، أمانى عطية عبداللطيف⁽²⁾ ، إبراهيم الصاوى البلاط⁽¹⁾ ، صمد السيد محمد أحمد⁽¹⁾

⁽¹⁾ قسم البساتين – كلية الزراعة – جامعة طنطا ⁽²⁾ قسم البطاطس والتكاثر الخضرى – معهد بحوث البساتين – مركز البحوث الزراعية

الملخص العربى

أجريت هذه الدراسة خلال موسمى 2015/1014 و 2016/2015 فى مزرعة خاصة بقرية شونى – مركز طنطا – محافظة الغربية لدراسة تأثير الرش الورقى بحمض الجبرلين ومعدل إزالة المدادات على النمو الخضرى والمكونات الكميائية وكذلك الفيزيائية والمحصول ومكوناته وجودة الثمار لنبات الفراولة (صنف فورتونا) وتضمنت التجربة 12 معاملة ناتجة

من التوافيق بين 3 معاملات من حمض الجبريليك هي صفر – 25 – 50 جزء في المليون و4 معاملات من المدادات هي (صفر – 5مدادات – 10مدادات – تزك جميع المدادات) واستخدام تصميم القطع المنشقة لمرة واحدة.

وكانت أهم النتايج المتحصل عليها هي:-

بالنسبة للرش بالجبرلين فقد أدى الرش بتركيز 25 جزء في المليون إلى الحصول على أعلى زيادة معنويه في عدد الثمار و المحصول المبكر خلال موسمي النمو .

وبالنسبة لإزالة المدادات فقد أدى إزالة جميع المدادات إلى الحصول على أعلى لقيم المعنوية بالنسبة لصفات إرتفاع النبات و حجم و وزن وشكل الثمار.

وبالنسبة للتفاعل بين إستخدام الجبرلين وإزالة المدادات أشارت النتائج إلى أن المعاملة برش بحامض الجبريليك بتركيز 25 جزء في المليون مع إزالة جميع المدادات أعطت أفضل النتائج في معظم الصفات المدروسة.