HETEROSIS AND COMBINING ABILITY IN MELON (CUCUMIS MELO L.)

A. A. EL- Sayed, Amani H. Gharib and M. A. F. A. El-Tahawey
Department of Vegetables, Medicinal and Aromatic Plant Breeding, Horti. Res. Inst., Agric. Res. Cen., Giza, Egypt.

Received: Jul. 25, 2019 Accepted: Sep. 3, 2019

Abstract

The purpose of this study was to estimate heterosis, general and specific combining ability in melon hybrids to identify the best combinations during the period from 2017 to 2019 at the Vegetable Research Farm, Horticultural Research Institute, Agricultural Research Center (ARC), Kaha and Dokki, Egypt. Six parents and their respective hybrids were evaluated in a randomized complete block design (RCBD) with three replications. The following traits were assessed of: main stem length, number of leaves, average fruit weight, fruit length, fruit diameter, flesh thickness, fruit cavity, fruit shape index, TSS and total yield/fed. The heterotic expression for total yield was the most important trait in this investigation. Potence ratio that measured the average of dominance confirmed the partial dominance for plant length and total yield but over-dominance appeared in the other characters. The range of both types of F_{1} heterosis for studied characters indicated that the expression of heterosis varied according to different crosses and characters investigated. The results showed significant and highly significant mean squares for both GCA and SCA in all studied traits except fruit shape index, indicating the important role of both additive and non-additive gene effects in the expression of these traits. However, a greater ratio of GCA/SCA than unity as detected for number of leaves, fruit diameter, fruit weight, TSS and total yield revealing that the inheritance of these traits mainly was controlled by additive gene action. The estimates of GCA effects in individual parental genotypes of the F^{\prime} s generation were significant and highly significant for the most studied traits. However, the crosses ($P_{1} \times P_{3}$) and ($P_{2} \times P_{4}$) achieved highly SCA effects for the most traits in this study, which means that GCA effects of the parents were reflected in the SCA effects in the crosses for the most studied traits.

Key words: Cucumis melo, inbred lines, heterosis, potence ratio, GCA, SCA, Melon.

INTRODUCTION

Melon is grown in Egypt as one of the most important vegetable crops for local consumption and exportation to many countries where it occupied an important position among the exported agricultural crops in many countries. In Egypt, the cultivated area of melon in 2017 according to the Ministry of Agriculture statistics, reached about 72173 feddan which produce 851194 tons with an average of 11.79 tons/fed. High yield, early maturity and uniform fruit shape and size as well as excellent quality are important objective in melon breeding programs. Yield associated with several traits including
primary branch number, days to anthesis, fruit number and average fruit weight (Zalapa et al., 2006). The general combining ability (GCA) is relating to additive effects, representing the average parental performance in hybrid combinations while the specific combining ability (SCA) is relating to nonadditive effects. Vashisht et al. (2010) on muskmelon stated results revealed that the importance of heterosis breeding for effective utilization of non-additive genetic variance. Barros et al. (2011) on melon found that total fruit number of melon, yield, flesh firmness and total soluble solids content were controlled by
additive and non-additive effects, while average fruit weight, longitudinal diameter, flesh thickness and internal cavity size were controlled by additive effects. Additive gene effects were most important with respect to average fruit weight, flesh thickness, days to fruit maturity and TSS, while genetic dominance effects mainly controlled total yield. The parent, Dastjerdi had the highest additive effect for fruit weight and days to fruit maturity while the parents Tiltorogh and Savei had the highest additive effects for flesh thickness and TSS, respectively.

Favorable heterosis over the better parent was found for total yield on Cantaloupe (Mohammadi et al. 2014). The estimates of GCA effects revealed that the line IL39B had considerable significantly positive effects for TSS providing to be a good combiner. Both parental lines IL43C and IL133K were the best general combiners for average fruit weight, leaf area index, total yield and one or two quality traits due to their significant desirable values of GCA effects for these traits. In cantaloupe, all studied crosses exhibited significantly positive SCA effects for total yield (Hussein and selim, 2014). Hatem et al. (2014) on melon found that both additive and non-additive gene effects were involved while the additive gene effects appeared to play the main role in the inheritance of all studied traits. Since estimated GCA: SCA ratio values ranged from 4.4 to 57.8 . None of the parents were found to be good combiner for all characters. Hybrid vigor was detected for early and total yield as well as the most fruit characters.

In general, The main objectives of the present investigation were to estimate the magnitude of heterosis as well as general and specific combining ability in some economic traits in melon using a half diallel mating design.

MATERIALS AND METHODS

This study was conducted in three years 2017, 2018 and 2019.The used genetic materials were $\mathrm{Kcl} 1, \mathrm{Kcl} 2, \mathrm{Kcl} 3$, Kcl 4, Kcl 5, and Kcl 6 (galia type, which green flesh, full netting). They were produced by the first author of the present study in breeding program by selfing and selection during four generations.

Six inbred lines of melon were crossed in half diallel design to produce $15 \mathrm{~F}_{1}$ hybrids without reciprocal. The experiment was arranged in a randomized complete block design with three replications to evaluate 21 genotypes (six parents and 15 hybrids). Each plot consisted of two rows with 5 m long and 1.75 m width. Seeds were sown in hills at 50 cm apart. Three weeks later, seedlings were thinned to one plant per hill. The agricultural practices for melon production, i.e., irrigation, fertilization, weeding and pest control were practiced as recommended in the area.

The studied characters.

a. Main stem length (cm): main stem length was measured in centimeters from the cotyledon node to the top end.
b. Number of leaves: counting of leaves begun from the cotyledon node to the top end.
c. Fruit quality: (fruit length (cm), fruit diameter (cm), flesh thickness (cm), fruit cavity, fruit shape index and total soluble solids (TSS) by using a hand refractometer were determined in ripe fruits and average values were only represented.
d. Yield: total yield was measured as weight of all harvested fruits at the yellow-netted ripe, and average fruit weight was determined.

Statistical analysis

The obtained data were statistically analyzed and mean comparisons were based on the LSD test according to Gomez and Gomez (1984). The genetic
analysis of half diallel crosses for general and specific combining abilities was done based on the method proposed by Griffing (1956), method (2) model (1). The relative potency of gene set (P) was used to determine the direction of dominance according to Smith (1952),
Potence ratio (P.R. \%) $=\frac{\overline{F_{1}}-\overline{M P}}{\frac{1}{2} \times\left(\overline{P_{2}}-\overline{P_{1}}\right)}$
Where: $F_{1}=$ First generation mean.
$P_{1}=$ Mean of the smaller parent.
$P_{2}=$ Mean of the larger parent.
$\mathbf{M P}=\boldsymbol{m i d}$ parent value $=1 / 2\left(\overline{P_{1}}+\overline{P_{2}}\right)$.
Heterosis based on the mid (HMP) and better parent (HBP) values were estimated according to Sinha and Khanna (1975).
$\operatorname{HMP}(\%)=\frac{\overline{F_{1}}-\overline{M P}}{\overline{M P}} \times 100$
Where, $\overline{F_{1}}=$ mean performance of cross
and $\overline{M P}=$ mean performance of midparent
$\operatorname{HBP}(\%)=\frac{\overline{F_{1}}-\overline{B P}}{\overline{B P}} \times 100$
Where, $\overline{F_{1}}=$ mean performance of cross and $\overline{B P}=$ mean performance of better parent

RESULTS AND DISCUSSION

Mean performances of the evaluated melon genotypes for the growth and fruit traits:

Mean performances of the six melon inbred lines and their $15 F_{1}$ hybrids for some growth and fruit yield traits presented in Table (1). These results showed variations for plant length in the evaluated melon genotypes. The parental lines ranged from $162.42 \mathrm{~cm}\left(\mathrm{P}_{2}\right)$ to 426.59 cm (P_{4}) while the plant length of the hybrids ranged from $210.84 \mathrm{~cm}\left(\mathrm{P}_{3} \times \mathrm{P}_{6}\right)$ to $377.50 \mathrm{~cm}\left(\mathrm{P}_{1} \times \mathrm{P}_{5}\right)$. Among parents, P_{4} gave the greatest length meanwhile \mathbf{P}_{2}
was the shortest. Regarding to crosses, cross ($P_{1} \times P_{5}$) had the longest plants, but ($\mathrm{P}_{3} \times \mathrm{P}_{6}$) had the shortest plants compared with the control. Regarding number of leaves among parents ranged from 23.20 $\left(P_{2}\right)$ to $43.17\left(\mathrm{P}_{4}\right)$. Regarding to crosses, cross ($\mathrm{P}_{2} \times \mathrm{P}_{4}$) gave the greatest number of leaves with no significant compared with the control while cross ($\mathrm{P}_{3} \times \mathrm{P}_{6}$) gave the lowest number of leaves. These results are in agreement with Hussein and Selim (2014) on cantaloupe. The results indicated that, the parental lines for average fruit weight was ranged from $595.85 \mathrm{~g}\left(\mathrm{P}_{4}\right)$ to $1445.86 \mathrm{~g}\left(\mathrm{P}_{2}\right)$. The average fruit weight of the hybrids ranged from 698.35g ($\mathrm{P}_{1} \times \mathrm{P}_{4}$) to 2420.01g ($\mathrm{P}_{2} \times \mathrm{P}_{3}$). As well as, the hybrid ($\mathrm{P}_{2} \times \mathrm{P}_{3}$) had the highest significantly average fruit weight among all evaluated genotypes compared with the control. For fruit length, the parents ranged from $11.23 \mathrm{~cm}\left(\mathrm{P}_{1}\right)$ to $15.80 \mathrm{~cm}\left(\mathrm{P}_{5}\right)$. The fruit length of the hybrids ranged from $13.17 \mathrm{~cm}(\mathrm{P} 1 \times \mathrm{P} 6)$ to $19.21 \mathrm{~cm}\left(\mathrm{P}_{2} \times \mathrm{P}_{3}\right)$. The parental range of fruit diameter was from $9.74 \mathrm{~cm}\left(\mathrm{P}_{3}\right)$ to $13.57 \mathrm{~cm}\left(\mathrm{P}_{2}\right)$. The fruit diameter of the hybrids ranged from 9.37 $\mathrm{cm}\left(\mathrm{P}_{3} \times \mathrm{P}_{6}\right)$ to $16.32 \mathrm{~cm}\left(\mathrm{P}_{2} \times \mathrm{P}_{3}\right)$. Fruit shape index had narrow range between the inbred lines and among hybrids where all genotypes produced cylindrical fruits compared with the control. These results are in agreement with Hussein and selim (2014) on cantaloupe.

Table (2) shows that there is narrow range among inbred lines for flesh thickness where P_{4} gave the greatest value while P_{1} and P_{3} gave the smallest value with no different with P_{5} and P_{6}. As well as, the hybrid $\left(P_{2} \times P_{6}\right)$ gave the greatest value but ($P_{1} \times P_{4}$) gave the smallest value with no different with Galia hybrid (control). Concerning fruit cavity, P_{6} gave the smallest value over all evaluated parents with significant differences, while P_{2} was the largest in this trait. The cross $\left(P_{3} \times P_{6}\right)$ gave the smallest value over all evaluated crosses with significant differences. On the other

A. A. EL-Sayed, et al.,

hand, $\left(P_{2} \times P_{3}\right)$ was the largest in this trait with no significant differences with ($P_{2} \times P_{4}$) compared with the control. The greatest TSS contents were recorded by the hybrid ($\mathrm{P}_{3} \times \mathrm{P}_{4}$) and it was different significantly from all other evaluated genotypes. The hybrid ($P_{3} \times P_{6}$) gave the lowest TSS content compared with Galia
hybrid (control). The total yield trait was very important for breeders and growers, the parent P_{2} gave the greatest value over all evaluated genotypes, on the contrary ($\mathrm{P}_{3} \times \mathrm{P}_{6}$) hybrid gave the smallest value for this trait. These results are in agreement with Hussein and selim (2014) and Hatem et al. (2014) on cantaloupe.

Table 1. Mean performance of $15 \mathrm{~F}_{1}$'s and their six parents for plant length, number of leaves, average fruit weight, fruit length, fruit diameter and fruit shape index of melon (combined of 2017/2018 and 2018/2019).

Genotype	Plant length (cm)	Number of leaves	Average fruit weight (g)	Fruit length (cm)	Fruit diameter (cm)	Fruit shape index (L/D)
(P_{1})	191.09	23.67	608.21	11.23	9.90	1.13
$\left(\mathrm{P}_{2}\right)$	162.42	23.20	1445.86	15.37	13.57	1.13
$\left(\mathrm{P}_{3}\right)$	326.09	33.57	974.15	11.40	9.74	1.17
(P_{4})	426.59	43.17	595.85	13.63	10.97	1.24
(P5)	310.75	34.57	1086.66	15.80	10.98	1.44
(P_{6})	329.75	34.63	764.15	14.37	11.00	1.31
$\mathrm{P}_{1} \times \mathrm{P}_{2}$	305.84	34.76	1386.65	15.30	14.32	1.07
$\mathrm{P}_{1} \times \mathrm{P}_{3}$	319.77	34.26	1439.35	18.14	13.52	1.34
$\mathrm{P}_{1} \times \mathrm{P}_{4}$	290.84S	35.42	698.35	15.37	10.48	1.47
$\mathrm{P}_{1} \times \mathrm{P}_{5}$	377.50	37.26	1210.00	15.66	13.20	1.19
$\mathrm{P}_{1} \times \mathrm{P}_{6}$	306.00	35.33	1183.00	13.17	12.87	1.02
$\mathrm{P}_{2} \times \mathrm{P}_{3}$	370.00	35.25	2420.01	19.21	16.32	1.18
$\mathrm{P}_{2} \times \mathrm{P}_{4}$	320.84	40.92	1892.71	17.80	14.58	1.22
$\mathrm{P}_{2} \times \mathrm{P}_{5}$	310.00	35.33	801.00	14.44	10.58	1.36
$\mathrm{P}_{2} \times \mathrm{P}_{6}$	315.84	34.67	1908.65	16.90	15.28	1.11
$\mathrm{P}_{3} \times \mathrm{P}_{4}$	319.50	33.67	1256.31	18.21	14.22	1.28
$\mathrm{P}_{3} \times \mathrm{P}_{5}$	222.67	29.58	1346.37	16.20	14.13	1.15
$\mathrm{P}_{3} \times \mathrm{P}_{6}$	210.84	22.76	645.01	13.28	9.37	1.42
$\mathrm{P}_{4} \times \mathrm{P}_{5}$	320.00	35.00	807.50	13.24	11.45	1.16
$\mathrm{P}_{4} \times \mathrm{P}_{6}$	330.18	34.50	812.35	12.52	11.32	1.11
$\mathrm{P}_{5} \times \mathrm{P}_{6}$	305.67	34.58	1430.00	15.80	14.30	1.10
Control (galia)	372.29	40.37	788.72	13.66	10.83	1.26
LSD at 0.05\% Inbred lines Hybrids	$\begin{aligned} & 5.85 \\ & 1.84 \end{aligned}$	$\begin{aligned} & 2.98 \\ & 1.04 \end{aligned}$	$\begin{aligned} & 57.61 \\ & 51.74 \end{aligned}$	$\begin{aligned} & 0.42 \\ & 0.77 \end{aligned}$	$\begin{aligned} & 0.16 \\ & 0.15 \end{aligned}$	$\begin{aligned} & 0.04 \\ & 0.05 \end{aligned}$

Table 2. Mean performance of $15 F_{1}$'s and their six parents for flesh thickness, fruit cavity, TSS and total yield of melon-inbred lines (combined of 2017/2018 and 2018/2019).

Genotype	Flesh thickness (cm)	Fruit cavity (cm)	TSS	Total yield (ton/fed)
$\left(\mathrm{P}_{1}\right)$	3.03	5.23	8.30	10.34
$\left(\mathrm{P}_{2}\right)$	3.53	6.03	6.57	23.10
$\left(\mathrm{P}_{3}\right)$	3.03	4.07	8.24	13.49
$\left(\mathrm{P}_{4}\right)$	4.13	4.10	10.80	10.63
$\left(\mathrm{P}_{5}\right)$	3.10	5.47	6.54	17.13
$\left(\mathrm{P}_{6}\right)$	3.23	4.03	6.55	13.19
$\mathrm{P}_{1} \times \mathrm{P}_{2}$	4.30	5.13	7.38	14.81
$\mathrm{P}_{1} \times \mathrm{P}_{3}$	4.47	5.17	9.26	15.71
$\mathrm{P}_{1} \times \mathrm{P}_{4}$	3.17	4.50	10.21	7.83
$\mathrm{P}_{1} \times \mathrm{P}_{5}$	3.87	5.90	7.55	12.92
$\mathrm{P}_{1} \times \mathrm{P}_{6}$	3.90	4.90	9.32	12.87
$\mathrm{P}_{2} \times \mathrm{P}_{3}$	4.47	7.17	8.42	18.92
$\mathrm{P}_{2} \times \mathrm{P}_{4}$	4.17	7.14	8.61	17.60
$\mathrm{P}_{2} \times \mathrm{P}_{5}$	3.41	3.27	9.60	8.70
$\mathrm{P}_{2} \times \mathrm{P}_{6}$	5.27	5.64	7.36	16.32
$\mathrm{P}_{3} \times \mathrm{P}_{4}$	3.87	5.87	11.90	13.72
$\mathrm{P}_{3} \times \mathrm{P}_{5}$	5.07	4.50	8.62	14.00
$\mathrm{P}_{3} \times \mathrm{P}_{6}$	3.18	3.24	6.28	7.12
$\mathrm{P}_{4} \times \mathrm{P}_{5}$	3.67	4.97	9.84	8.85
$\mathrm{P}_{4} \times \mathrm{P}_{6}$	3.28	5.19	8.66	8.87
$\mathrm{P}_{5} \times \mathrm{P}_{6}$	4.27	6.10	9.66	15.43
Control (galia)	3.12	5.95	9.65	12.68
LSD at 0.05%		0.16	1.23	0.80
Inbred lines	0.21	0.12	0.25	0.45
Hybrids	0.11			

Heterosis over mid-parent (MP-

 heterosis)Mid parent heterosis for all studied traits are presented in Table (3). The results show clearly that all crosses showed highly significant heterosis except cross ($\mathrm{P}_{5} \times \mathrm{P}_{6}$) which showed nonsignificant negative heterosis for plant length and number of leaves /plant. Mid parent heterosis for average fruit weight as positive highly significant but the crosses ($P_{2} \times P_{5}$ and $P_{3} \times P_{6}$) showed negative highly significant heterosis. On
the other hand, the hybrid ($\mathrm{P}_{4} \times \mathrm{P}_{5}$) was non-significant negative heterosis for this trait. Heterosis values over mid-parent for flesh thickness recorded positive significant heterosis among most of the crosses but crosses ($\mathrm{P}_{1} \times \mathrm{P}_{4}$ and $\mathrm{P}_{4} \times \mathrm{P}_{6}$) were negative significant but the crosses ($P_{2} \times P_{5}, \quad P_{4} \times P_{5}$ and $P_{3} \times P_{6}$) were not significant. The best crosses for fruit cavity trait were ($\mathrm{P}_{2} \times \mathrm{P}_{5},-43.20$) and ($\mathrm{P}_{3} \times$ $\left.P_{6},-20.04\right)$ while the crosses ($P_{3} \times P_{5}$), $\left(P_{1} \times P_{4}\right)$, $\left(P 1 \times P_{6}\right)$ and $\left(P_{4} \times P_{5}\right)$ had nonsignificant heterosis.
A. A. EL-Sayed, et al.,

Table 3. Heterosis values (\%) over mid-parents (MP) of $15 \mathrm{~F}_{1}$ hybrids for some melon characters.

Crosses	Plant length	Number of leaves	Average fruit weight	Flesh thickness	Fruit cavity	Fruit shape index(L/D)	TSS	Total yield
$\mathbf{P}_{1} \times \mathbf{P}_{2}$	73.08**	48.33**	35.01**	31.02**	-8.84*	$-5.42{ }^{\text {NS }}$	$-0.65{ }^{\text {NS }}$	-11.40**
$\mathbf{P}_{1} \times \mathbf{P}_{3}$	23.64**	19.70**	81.92**	47.32**	11.07*	16.48**	11.97**	31.90**
$\mathrm{P}_{1} \times \mathrm{P}_{4}$	-5.86*	5.98*	15.99*	-11.59*	$-3.55{ }^{\text {NS }}$	24.56**	7.00*	-25.26**
$\mathbf{P}_{1} \times \mathbf{P}_{5}$	50.46**	27.94**	42.78**	26.13**	10.26*	-7.74*	1.77 NS	-5.89 NS
$\mathbf{P}_{1} \times \mathbf{P}_{6}$	17.48**	21.21**	72.40**	24.52**	5.75 NS	-16.09**	25.62**	9.43*
$\mathrm{P}_{2} \times \mathrm{P}_{3}$	51.60**	24.20**	100.00**	36.17**	41.83**	28.57**	13.71**	3.42 NS
$\mathrm{P}_{2} \times \mathrm{P}_{4}$	8.98*	23.31**	85.40**	8.78*	40.96**	$4.16{ }^{\text {NS }}$	-0.76 NS	4.40 NS
$\mathrm{P}_{2} \times \mathrm{P}_{5}$	31.12**	22.32**	-36.74**	3.10 NS	-43.20**	6.45*	46.54**	-56.75**
$\mathrm{P}_{2} \times \mathrm{P}_{6}$	28.42**	19.89**	72.72**	55.81**	12.06*	-9.47*	12.20**	-10.01*
$\mathrm{P}_{3} \times \mathrm{P}_{4}$	-15.09*	-12.25*	60.03**	8.00*	43.66**	6.10*	25.06**	13.78**
$\mathrm{P}_{3} \times \mathrm{P}_{5}$	-30.61**	-13.17*	30.66**	65.43**	-5.68 NS	-12.24**	16.65**	-8.54*
$\mathrm{P}_{3} \times \mathrm{P}_{6}$	-35.72**	-33.26**	-25.78**	$1.16{ }^{\text {NS }}$	-20.04**	14.66**	-15.00**	-46.59**
$\mathrm{P}_{4} \times \mathrm{P}_{5}$	-13.19**	-9.96*	-4.01 ${ }^{\text {NS }}$	1.49 NS	3.87 NS	-12.385**	13.50**	-36.24**
$\mathrm{P}_{4} \times \mathrm{P}_{6}$	-12.68*	-11.31*	19.46*	-10.78*	27.63**	-12.55**	$-0.11{ }^{\text {NS }}$	-25.47**
$\mathrm{P}_{5} \times \mathrm{P}_{6}$	-4.53 NS	-0.05 ${ }^{\text {NS }}$	54.52**	34.90**	28.52**	-19.51**	47.62**	$1.80{ }^{\text {NS }}$

NS,*,**: insignificant and significant at 0.05 and 0.01 \% probability levels.

The fruit shape index heterosis values over mid-parent showed highly negative significant values for seven crosses while the crosses ($P_{1} \times P_{2}$ and $P_{2} \times P_{4}$) were not significant. Concerning total soluble solids (TSS), desirable significantly positive MP heterosis were observed for most of crosses which revealing hybrid vigor in this trait where the cross ($\mathrm{P}_{5} \times \mathrm{P}_{6}$) was the best (TSS). These results were in agreement with Sari et al. (2012). The heterotic expression for total yield percentage was the most important trait in this investigation. However, the values of MP heterosis were significant and highly significant for this trait ranging from 56.75 to 31.90%, where the highest
crosses for total yield / fed were ($\mathrm{P}_{1} \times \mathrm{P}_{3}$, $P_{3} \times P_{4}$ and $\left.P_{1} \times P_{6}\right)(31.90,13.78$ and 9.43%, respectively). These results were in agreement with Hussein and selim (2014) and Hatem et al. (2014) on cantaloupe.

Generally, the established MP heterosis values (Table 3) show that were significantly positive in most F_{1} crosses for the studied traits, indicating dominance of the traits towards the highest parent. On the other hand, some crosses showed significant negative values indicating dominance towards the lowest parent in character. Insignificant values were shown by few crosses, suggesting no dominance for the character.

Heterosis values over better parent HBP for all studied traits were presented in Table (4). Heterosis for Plant length ranged from -0.24 to 60.05 . Most of hybrids were negative significant but hybrid $\mathrm{P}_{1} \times \mathrm{P}_{2}$ was positive with highly significant for Plant length as well as for number of leaves. Heterosis for average fruit weight was positive with highly significant but the crosses ($\mathrm{P}_{2} \times \mathrm{P}_{5}, \mathrm{P}_{3} \times \mathrm{P}_{6}$ and $P_{4} \times P_{5}$) showed negative highly significant heterosis. On the other hand, the hybrid ($\mathrm{P}_{1} \times \mathrm{P}_{2}$) showed significant negative heterosis for this trait. Desirable significantly positive BP heterosis was observed in eight crosses, while the crosses ($\mathrm{P}_{1} \times \mathrm{P}_{4}, \mathrm{P}_{4} \times \mathrm{P}_{5}$ and $\mathrm{P}_{4} \times \mathrm{P}_{6}$) exhibited significantly negative BP heterosis for flesh thickness. Concerning fruit cavity, desirable significantly positive BP heterosis were observed for most of crosses which revealing hybrid vigor in this trait where the cross ($\mathrm{P}_{2} \times \mathrm{P}_{3}$) was the best for this trait. Fruit shape index ranged from -15.42 \% to $\mathbf{2 9 . 2 9} \%$. Six out 15 hybrids exhibited desirable significant heterosis over BP. The heterotic expression for TSS \%, the most important trait in this investigation. So, six from 15 hybrids exhibited highly significant values of BP heterosis. Heterosis values for total yield recorded negative significant heterosis among most of the crosses but crosses ($\mathrm{P}_{1} \times \mathrm{P}_{3}$) were positive significant but the crosses ($P_{1} \times P_{6}$ and $P_{3} \times P_{4}$) were not significant. These results were in agreement with Hussein and selim (2014) and Hatem et al. (2014) on cantaloupe. The estimated better parent heterosis (MPH) for the studied traits in each F_{1} Cross showed that hybrid vigor was observed for plant length and number of leaves. In three crosses i. e. $\mathrm{P}_{1} \times \mathrm{P}_{2}, \mathrm{P}_{1} \times \mathrm{P}_{5}$, and $\mathrm{P}_{2} \times \mathrm{P}_{3}$; for average fruit weight in most crosses; for
cavity in most crosses; for shape index in seven crosses; for TSS content in six crosses and for total yield in the F_{1} cross $P_{1} \times P_{3}$ only. These crosses significantly exceed the better parent in the character. the remaining showed significant negative heterosis or not significant values indicating dominance towards the lowest parent or no- dominant for the trait. The estimated values of potence ratio (Table 5) showed that most F_{1} crosses had positive nature for average fruit weigh, flesh thickness, fruit cavity and TSS. Suggesting dominance towards the highest parent in the character (partial, complete and over dominance). On the contrary, the estimated values of potence ratios in most F_{1} hybrids were negative for plant length, number of leaves and total yield/fed. Indicated dominance towards the recessive parent. These results are in agreement with Hussein and selim (2014) and Hatem et al. (2014) on cantaloupe.

Analysis of variance and gene action of the studied traits

The results of Table (6) showed significant and highly significant mean squares for both GCA and SCA in all studied traits except fruit shape index revealing the importance of additive and non-additive gene effects in the inheritance of these traits. However, a greater ratio of GCA/SCA than unity were detected for number of leaves, fruit diameter, fruit weight, TSS content and total yield revealing that the inheritance of these traits was mainly controlled by additive gene effects. While the other characters were less than unity which mean that non-additive gene effects mainly control the inheritance of these traits.

A. A. EL- Sayed, et al.,

Table 4. Better-parents heterosis value (BPH \%) of $15 \mathrm{~F}_{1}$ hybrids for some melon characters.

Crosses	Plant length	Number of leaves	Fruit weight	Flesh thickness	Fruit cavity	Fruit shape index(L/D)	TSS	Total yield
$\mathbf{P}_{1} \times \mathbf{P}_{2}$	60.05**	46.85**	-4.10 NS	21.81**	-1.91 NS	-5.67*	-11.08**	-35.89**
P	-1.94	2.06 NS	47.75**	47.52**	27.03**	18.28**	11.57**	16.46**
$\mathbf{P}_{1} \times \mathbf{P}_{4}$	-31.82**	-17.95**	14.82**	-23.24**	9.76*	29.29**	-5.46*	-26.34**
P_{1}	21.48**	7.78*	11.35**	24.84**	12.81*	4.59*	-9.04*	-24.58**
P	-7.2	2.	54.81	20.7	21.5	-9.79	12.29**	-2
$\mathrm{P}_{2} \times \mathrm{P}_{3}$	13.47	5.00*	67.38**	26.63**	76.17**	3.92 NS	$2.18{ }^{\text {NS }}$	-18.10**
$\mathrm{P}_{2} \times \mathrm{P}_{4}$	-24.79*	-5.21*	30.91	0.97	74.15*	7.79*	-20.28**	-23.81**
$\mathrm{P}_{2} \times \mathrm{P}_{5}$	-0	2.20	-44.60*	-3	-40.22	20.50	46.12**	-62.34**
$\mathrm{P}_{2} \times \mathrm{P}_{6}$	-4.22	$0.12{ }^{\text {NS }}$	32.01**	49.29**	39.95**	$-2.35{ }^{\text {NS }}$	12.02**	-29.35**
$\mathrm{P}_{3} \times \mathrm{P}_{4}$	-25.10*	-22.01*	28.96*	-6.30*	44.23**	9.41**	10.19**	$1.70{ }^{\text {NS }}$
$\mathrm{P}_{3} \times \mathrm{P}_{5}$	-31.72**	-14.43**	23.90**	63.55**	10.57**	-2.04 ${ }^{\text {SS }}$	4.61 NS	-18.27**
$\mathrm{P}_{3} \times \mathrm{P}_{6}$	-36.06**	-34.28**	-33.79**	-1.55 ${ }^{\text {NS }}$	-19.60**	21.09**	-23.79**	-47.22**
$\mathrm{P}_{4} \times \mathrm{P}_{5}$	-24.99**	-18.93**	-25.69**	-11.14**	21.22**	-6.93*	-8.89*	-48.34**
$\mathrm{P}_{4} \times \mathrm{P}_{6}$	-22.60**	-20.08**	6.31*	-20.58**	28.78**	-10.98**	-19.81**	-32.75**
$\mathrm{P}_{5} \times \mathrm{P}_{6}$	-7.30*	-0.14 ${ }^{\text {Ns }}$	31.60**	32.20**	51.36**	-15.42**	47.48**	-9.92*

NS,, ,,*: in significant and significant at 0.05and 0.01 \% probability levels.
Table 5. Potence ratio (P) for $15 F_{1}$'s for studied traits melon characters.

Crosses	Plant length	Number of leaves	Fruit weight	Flesh thickness	Fruit cavity	TSS	Total yield/fed
$P_{1} \times P_{2}$	9.01	48.19	0.85	4.10	-1.24	-0.05	-0.29
$P_{1} \times P_{3}$	0.90	1.13	3.54	89.85	0.88	33.00	2.41
$P_{1} \times P_{4}$	-0.15	0.20	15.59	-0.75	-0.29	0.53	-17.95
$P_{1} \times P_{5}$	2.11	1.49	1.51	26.04	4.67	0.14	-0.23
$P_{1} \times P_{6}$	0.65	1.12	6.37	7.81	0.44	2.17	0.77
$P_{2} \times P_{3}$	-1.53	-1.32	5.13	4.74	2.15	1.21	0.13
$P_{2} \times P_{4}$	-0.19	-0.77	2.05	1.12	2.14	-0.03	0.11
$P_{2} \times P_{5}$	-0.98	-1.13	-2.59	0.47	-8.74	23.23	-3.82
$P_{2} \times P_{6}$	-0.83	-1.00	2.35	12.57	0.60	80.00	-0.36
$P_{3} \times P_{4}$	-1.13	-0.97	2.49	0.52	42.60	1.86	1.16
$P_{3} \times P_{5}$	-0.59	-0.31	0.65	2.03	-0.58	0.76	-0.30
$P_{3} \times P_{6}$	-63.88	-21.30	-2.13	0.36	-40.58	-1.31	-41.42
$P_{4} \times P_{5}$	0.84	0.90	-0.13	0.10	0.27	0.55	-1.54
$P_{4} \times P_{6}$	0.99	1.03	1.57	-0.88	34.53	-0.01	-2.37
$P_{5} \times P_{6}$	-1.53	-0.66	3.12	16.35	1.88	23.00	0.14

Table 6. Mean squares of variance for combining ability (GCA and SCA) and GCA/SCA ratio for some economic traits in half-diallel cross in melon.

Traits	Mean squares			GCA/SC
	GCA	SCA	Error	
Plant length	$11214.8^{* *}$	$11531.2^{* *}$	4.00	0.97
Number of leaves	$99.22^{* *}$	$72.69^{* *}$	0.97	1.36
Fruit cavity	1.40^{*}	$3.24^{* *}$	0.00	0.43
Flesh thickness	0.38^{*}	1.60^{*}	0.00	0.23
Fruit length	$10.70^{* *}$	$15.86^{* *}$	0.15	0.67
Fruit diameter	$14.61^{* *}$	$11.60^{* *}$	0.00	1.25
Fruit shape index	0.001	0.007	0.00	0.14
Fruit weight	$1077590^{* *}$	$563788^{* *}$	740.67	1.91
TSS	$14.02^{* *}$	4.42^{*}	0.13	3.17
Total yield	$5651316^{* *}$	$2071227^{* *}$	649133	2.72

GCA = General combining ability, SCA = Specific combining ability. *, **: significant, highly significant at 0.05 and 0.01% probability levels.

The estimates of GCA effects of individual parental genotypes in the F_{1} 's generation were significant and highly significant for the most studied traits (Table 7). It is well known that GCA is a function of additive gene effect and the additive portions of epistatic variance, while SCA is the function due to nonadditive gene effects and the remainder of epistatic variance (Matzinger et al. 1959). The P_{2} was good combiner for all studied traits and P_{1} was good combiner for all studied traits except total soluble solid (TSS) and total yield. It is clear that the two parents (P_{1} and P_{2}) could be considered as the best combiner for breeding to most traits. Meanwhile, P_{3} was good general combiner for number of leaves, fruit weight, fruit diameter, fruit length and total yield. P_{4}, P_{5} and P_{6}) were good general combiners for most studied traits. These results are agree with those obtained by Damarany et al. (1999),

Hussein and selim (2014) and Hatem et al. (2014) on melon.

The potentiality of crossing between specific parents was detected by estimating specific combining ability effects (SCA) of each F_{1} cross for all studied traits (Table 8). The crosses $\left(P_{2} \times P_{4}\right)$, $\left(P_{2} \times P_{5}\right)$ and ($\left.P_{3} \times P_{6}\right)$ achieved highly (SCA) effects for all traits in this study which means comparing the general combining ability effects (GCA) of the parents to their corresponding crosses (SCA) indicating that the GCA effects of the parents were reflected in the (SCA) effects of the crosses for the most studied traits. Several researchers reported the importance of both additive and non-additive effects in the genetic control of yield components in melon (Vashisht et al. 2010, Barros et al. 2011 and Hussein and selim 2014).
Table 7. Estimates of general combining ability effects of six melon inbred lines for some characters.

Genotypes	Plant length	Number of leaves	Fruit weight	Fruit shape index	Fruit diameter	Fruit length	Flesh thickness	TSS	Fruit cavity	Total yield
(P_{1})	-17.60**	-1.35**	$-134.27^{* *}$	-0.03**	-0.24**	-0.68**	-0.12**	$0.05{ }^{\text {Ns }}$	0.40**	-290.16 ${ }^{\text {NS }}$
(P_{2})	-22.03**	-0.93**	382.01**	-0.05**	1.50**	1.09**	0.23**	-0.67**	0.10**	890.58**
(P_{3})	-3.79*	-1.67**	100.63**	$0.01{ }^{\text {Ns }}$	0.11**	0.26**	0.03 Ns	0.13 Ns	$0.05{ }^{\text {Ns }}$	$92.82{ }^{\text {Ns }}$
(P_{4})	38.86**	3.78**	-195.81**	0.01 Ns	-0.26**	$-0.16{ }^{\text {Ns }}$	$-0.04{ }^{\text {Ns }}$	1.38**	-0.14**	-489.16 ${ }^{\text {NS }}$
(P_{5})	4.00*	0.71**	-61.73**	0.06**	-0.52**	$0.16{ }^{\text {Ns }}$	$-0.04{ }^{\text {Ns }}$	$-0.20 \mathrm{Ns}$	-0.16**	23.08 NS
(F_{6})	$0.55{ }^{\text {NS }}$	-0.53 Ns	-90.81**	0.01 Ns	-0.58**	-0.65**	$-0.05{ }^{\text {Ns }}$	-0.69**	-0.25**	-227.15 ${ }^{\text {Ns }}$
S.E. (g i i ¢ $\mathrm{g}_{\text {j }}$)	0.57	0.28	7.85	0.01	0.02	0.11	0.02	0.10	0.02	232.58

Table 8. Estimates of specific combining ability (SCA) effects of $15 \mathrm{~F}_{1}$ hybrids for some melon characters.

Crosses	Plant length	Number of leaves	Fruit weight	Fruit shape index	Fruit diameter	Fruit length	Flesh thickness	Fruit cavity	TSS	Total yield
$\mathbf{P}_{1} \times \mathbf{P}_{2}$	42.12**	3.47**	-27.19*	-0.07 NS	0.73*	-0.19 NS	0.36**	-0.40 **	-0.55*	-339.74 ${ }^{\text {NS }}$
$\mathrm{P}_{1} \times \mathrm{P}_{3}$	37.81**	3.72**	301.84**	$0.14{ }^{\text {NS }}$	1.33**	3.47**	0.72**	0.17**	0.50*	713.344**
$\mathbf{P}_{1} \times \mathbf{P}_{4}$	-33.77**	$-0.57{ }^{\text {Ns }}$	-134.36**	$0.26{ }^{\text {NS }}$	-1.31**	1.13**	-0.48**	-0.47 **	$0.31{ }^{\text {Ns }}$	-570.00**
$\mathrm{P}_{1} \times \mathrm{P}_{5}$	87.74**	4.32**	226.55**	-0.08*	1.67**	1.07**	0.20*	0.70**	-0.89**	159.08 NS
$\mathrm{P}_{1} \times \mathrm{P}_{6}$	19.70**	3.57**	233.63**	-0.19**	1.39**	-0.60**	0.25*	0.02 NS	1.33**	323.98 NS
$\mathrm{P}_{2} \times \mathrm{P}_{3}$	92.47**	4.29**	741.22**	-0.01	2.38**	2.75**	0.36*	1.87**	0.37*	401.92 NS
$\mathrm{P}_{2} \times \mathrm{P}_{4}$	$0.65{ }^{\text {NS }}$	4.99**	527.01**	0.03*	1.03**	1.78**	0.15*	-0.10**	-0.64*	567.910**
$\mathrm{P}_{2} \times \mathrm{P}_{5}$	24.67**	1.89**	-695.40**	0.11*	-2.70**	-1.90**	-0.62*	-2.22**	1.90**	-2047.00**
$\mathrm{P}_{2} \times \mathrm{P}_{6}$	33.96**	2.48**	441.34**	-0.08*	2.04**	1.37**	1.26**	0.46**	$0.16{ }^{\text {NS }}$	20.56 NS
$\mathrm{P}_{3} \times \mathrm{P}_{4}$	-18.91**	-2.92**	183.05**	0.02	2.06**	2.91**	$0.05{ }^{\text {NS }}$	1.14**	1.84**	442.26 NS
$\mathrm{P}_{3} \times \mathrm{P}_{5}$	-82.56**	-3.02**	114.63**	-0.16**	2.25**	0.69**	1.24**	-0.44**	$0.10{ }^{\text {NS }}$	12.09 NS
$\mathrm{P}_{3} \times \mathrm{P}_{6}$	-89.27**	-8.60**	-535.94**	0.16**	-2.45**	-1.42**	-0.64**	-1.39**	-1.70**	-1353.67**
$\mathrm{P}_{4} \times \mathrm{P}_{5}$	-26.21**	-2.98**	-111.90**	-0.15**	-0.06*	-1.84**	-0.07*	$0.04{ }^{\text {NS }}$	0.08 NS	-637.25**
$\mathrm{P}_{4} \times \mathrm{P}_{6}$	-12.59**	-2.40**	-78.15*	-0.15**	-0.13*	-1.75**	-0.45**	0.59**	-0.58**	-374.88 NS
$\mathrm{P}_{5} \times \mathrm{P}_{6}$	-2.24 ${ }^{\text {S }}$	0.83*	398.09**	0.17**	-0.61**	1.21**	0.53**	1.27**	1.99**	626.73**
SE(Sij-Sik)	1.52	0.75	20.78	0.028	0.06	0.30	0.06	0.06	0.28	615.35
SE (Sij-Skl)	1.41	0.69	19.24	0.026	0.05	0.27	0.05	0.05	0.26	569.70

Conclusion

It could be concluded that, parent (P_{2}) could be considered as the best combiner for breeding to most traits. The crosses $\left(P_{2} \times P_{4}\right),\left(P_{2} \times P_{5}\right)$ and $\left(P_{3} \times P_{6}\right)$ achieved highly (SCA) effects for all studied traits. Comparing general combining ability effects (GCA) to their corresponding (SCA) effects indicated that the GCA effects of the parents were reflected in the SCA effects of the crosses for the most studied traits. All degree of dominance i.e. over dominance, partial dominance, complete dominance and no- dominance were defected in this study concerning the evaluated characters.

REFERENCES

Barros, A. K. A., G. H. S Nunes, M. A. Queiróz, E. W. L. Pereira and J. H. C. Filho (2011). Diallel analysis of yield and quality traits of melon fruits. Crop Breeding and Applied Biotechnology, 11: 313-319.
Damarany, A. M., G. A. Zayed and H. E. Asfour (1999). Genetical analysis for some economical characters in melon (Cucumis melo L.) grown in a sandy calcareous soil. J. Agric. Sci., Mansoura Univ., 24 (8): 4027-4035.
Gomez, A.K. and A.A. Gomez (1984). Statistical Procedures for Agricultural Research. 2nd ed. John Wiley \& Sons Pub., New York.
Griffing, B. (1956). Concept of general and specific combining ability in relation to diallel crossing system. Aust. Jour. Biol. Sci., 9: 463-493.
Hatem, M. K., Seham M. M. Aly and Mona R. Khalil (2014). Types of gene action and hybrid vigour for yield and quality traits of melon (Cucumis melo, L.). J.

Plant production, Mansoura Univ., 5 (5): 801-820.

Hussein, A. H. and M. A. M. Selim (2014). Breeding for improving quality and yield characteristics in Cantaloupe under high temperature conditions. Egypt. J. plant breed., 18 (2):243-264.
Matzinger, D. F., G. F. Sprague and C. C. Cockerham (1959). Diallel crosses of maize in experiments repeated over locations and years. Agron. J.,51: 346350.

Mohammadi, R., H. Dehghani and G. Karimzadeh (2014). Genetic analysis of yield components, early maturity and total soluble solids in cantaloupe (Cucumis melo L. subsp. Melo var cantalupensis Naudin).Yyü Tar BilDerg (YYU J Agr. Sci.), 24(1): 79-86.
Sari, N., I. Solmaz, S. Serti, I. Simsek and O. Dundar (2012). Determining the heterosis effect on orange fleshed Kirkagac melon genotypes developed by breeding. Acta Horticulturae, (935):191-198.

Sinha, S. K. and R. Khanna (1975). Physiological biochemical, and genetic basis of heterosis. Adv. Agron., 27: 123-174.
Smith, H. H. (1952). Fixing transgressive vigor in Nicotiana rustica. pp. 161-174 Gowen, J.W. (ed.), Heterosis, lowa State Coll., Ames, Iowa.
Vashisht, V. K., S. Guresh, L. Tarsem and A. K. Gaikwad (2010). Combining ability for yield and yield attributing traits in muskmelon (Cucumismelo L.). Crop Improvement, 37(1):36-40.
Zalapa, J. E., J. E. Staub and J. D. Mc. Creight (2006). Generation means analysis of plant architectural traits and fruit yield in melon. Plant Breed. 125: 482-487.

قوة الهجين والقدرة علي التآلف في الشمام

عمرو أحمد السيد، أماني حافظ غريب، محمد عادل فضل الطحاوي
قسم تربية الخضر والنباتات الطبية والعطرية- معهد بحوث البساتين- مركز البحوث الززاعية - الجيزة - مصر .
الملخص العربى
 بهف الحصـول على المزيد من الايضـاحات والمعلومات عن وراثة بغض الصـفات في الثــمام للمســاعدة في اعداد برامـج التربية وتحسين الشمام . أستخدم في هذه الاراسة ستة سلالات من الثمام من قسم تربية الخضر والنباتات الطبية بمصر
 مصممة بطريقة القطاعات الكاملة العشوائية في ثلاث مكررات وأخذت الثقيسات الللزمة على : طول النبات، عدد الاولق ومتوسط وزن الثمرة وقطر الثمرة وسـك اللحم وقطر الفجوة ودليل شكل الثمرة والمواد الصـلبة الذائبة الكلية والمحصول

الكلى.
وبعـ تحليل البيانات المتحصل عليها بالطرق المناسبه كانت أهم النتائج : 1- ظهرت أنواع مختلفة من السـيادة الجينيه ذات التأثير علي الصـفات حيث كانت السـياده الجزئيه هي المؤثره في طول

النبات والمحصول الكلي بينما كانت السيادة فائقه في الصفات الأخري.
 3- كان التباين لكل من القدرة العامة والخاصـة على الاتتلاف معنويا لكل الصفات الصدروسـة مما يؤكد على أهمية كل من الفعل المضيف وغير المضيف للجينات في وراثة هذه الصفات. 4- أظهرت النتائج وجود ثبات وراثي لجميع السـلالات في الصـفات المدروسـة حيث لم تظهر فروق مغوية بين موســي

الززاعة ولكن كان الاختلاف بين السلالات وبعضها البیض. 5- اختلفت الآباء في تأثيرات القـرة العامة على الاتتلاف وعموماً فإن الاب (P2) كانا أفضـــل الأباء حيث اعطى تأثيرات عامة على الاتتلاف لجميع الصفات المدروسة. 6- أظهرت حسابات تأثيرات القرة الخاصة على الاتم
 أن هذه الهجن يدخل في تكوينها أحد الآباء الذي أعطى الاستفادة بها في برامج التربية لتحسين الثمام. كما يككن تتبع بعض الهجن وتقييمها لتحل محل الهجن المستوردة.

