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ABSTRACT: Two experiments were carried out in private farm (Khatatba Minufiya
Governorate) in winter of field 2016/ 2017and 2017/ 2018 seasons to evaluate the alteration
of physiological and biochemical processes as well as yield and its quality of tomato
plants (Solanum lycopersicum) grown under chilling stress ((5-10°C at night).

The nanobiostimulators used in this study were, NB compound contains (CPPU, BR and
proline) used by two concentrations (NB1: 0.5 and NB2: 1.0 mI\L), nano jasmonic acid (JA1:
5and JAz: 10 ppm), and finally nano silicon (Si1: 2 and Siz;: 3 mM) beside the control plants
which sprayed with tap water. The treatments applied as foliar on tomato seedlings grown
under low temperature at 45, 60 and 90 day after transplanting.

The results were as following:- low temperature caused significant reductions in plant
height, fresh and dry weight of leaves and branches as well as leaf area, chlorophyll
content, antioxidant enzymes (PPO, PO and CAT), also reduced proline content and total
sugars. Moreover significant reduction in early and total yield and firmness, TSS and Vit
C, meanwhile increased chilling injury index (Cl) %.

Spraying NB; and Si; at low concentration caused a significant reduction in chilling injury
index (Cl) and increased significantly chlorophyll content, antioxidant enzymes (PPO, PO
and CAT), proline content and total sugars. Meanwhile significantly reduced chilling injury
index (Cl). Moreover, nanobiodtimulators at low concentration caused agood performance
for tomato plants with highly early yield (57, 48%) and (43, 40%) for NB1 & Si1 beside total
yield (30, 37%) and (20, 23%) for NB:1 & Si1, in both seasons respectively, also the same
treatments had induction in firmness, TSS and Vit. C compared to the control plants.

Key words: Chilling, CPPU, BR, JA, Si, proline, Antioxidant enzymes, yield, firmness,
vit.c.

INTRODUCTION objective to meet the higher human
population demand. Furthermore, itis well
known that, a serious reduction in tomato
production, in Egypt, was occurred as a
result of unfavorable low temperature
prevailing during the periods of October,
November, December, January and
February. Acclimation to cold stress has
been reported to involve the synthesis of

Tomato (Solanum lycopersicum)is one
of the most important vegetable crops in
Egypt and other world countries for fresh
consumption, industry processing and
exportation. Moreover, in 2016 total area
cultivated by this crop was estimated by
468510 Feddan with a total production of
7727217 tons with an average of 16.49

tons/Feddan®. proteins, membrane lipids, and
metabolites that confirm chilling tolerance

Increasing the production and the Graham and Patterson (1982). Yildiztugay
quality of tomato fruits is very important et al. (2017) and Hussain et al. (2018)
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reported that chilling stress caused an
inhibition in growth of soybean plants.

The mechanism of acclimation has
been postulated to involve maintenance
of membrane fluidity by increasing lipid
unsaturation, and enzymatic protective
systems Levitt (1980). More recently,
linkage between cold acclimation and
resistance to oxidative stress has been
postulated Prasad et al. (1994). Thus,
oxidative stress plays a dual role low-
temperature response, as a source of
injury and as a signal to increase
antioxidant defenses. Enhancing cold
tolerance was also associated with
treatments that increased the level of
antioxidants. Evidence has been reported
suggesting that cold stress takes the form
of oxidative stress, caused by the
stimulation of free oxygen radical
production Kerdaimongko et al. (1997). In
chilling (low temperature) sensitive plants
such as Zea mays L., exposure to low
temperatures in the light lead to the
peroxidation of membrane lipids and the
depletion of antioxidant compounds such

as tocopherol, both indications of
increased levels of reactive oxygen
species Prasad et al. (1994). Under

severe stress conditions, however, the
antioxidant capacity may not be sufficient
to minimize the harmful effect of oxidative
injury survival under stressful conditions
depends on the plant's ability to perceive
the stimulus, generate and transmit
signals, and induce biochemical changes
that adjust the metabolism accordingly.

Nanotechnology opens a large scope
of novel application in the field of
biotechnology and agricultural industries,
because nanoparticles (NPS) have pore
size, and particles morphology.
Nanoparticles can serve as magic bullets
containing herbicides, nano-pesticide
fertilizers, or genes, which target specific
cellular organelles in plant to release their
content.
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Researches from their finding
suggested both positive and negative
effects on plant growth and development,
and the impact of engineered
nanoparticles (ENPS) on plants depends
on the composition, concentration, size
and physical and chemical properties of
ENPs depend on their concentration and
varies from plants to plants Ma et al.
(2010).

CPPU is a member of the synthetic
cytokinin group with phenyl urea
structure, with strong inhibitory effects on
cytokinin oxidation (Mok and Mok, 2001).
This synthesis was registered with the
trade names of Sitofex and Prestige as a
new PGR for grape raisins and kiwifruit in
2005 (Mok and Mok, 2001). These PGRs
currently have widespread application in
grape raisins and Kiwifruit production.
The physiological actions of CPPU in
plants include increasing fruit size and
improving plant fruiting performance by
postponing the senescence process
(Ahmed and Abdel-aal 2007).

Brassinosteroids (BR) are a group of
plant steroid hormones that were first
isolated from Brassica pollen about
40years ago. Around 60 related
compounds have been identified Li et al.
(2016). Moreover, BR increase resistance
in plants to various kinds of abiotic stress
(low and high temperature, drought, heat,
salinity, Ca(NO3),, and heavy metal
toxicity) (Li et al., 2016) and (Yuan et al.,
2012). BR improve the plant defense
system to tolerate various stresses by
increasing chlorophyll contents, which
ultimately  increases  photosynthetic
capacity, enhances antioxidant system
capacity, increases enzymatic activity,
and up regulates stress response genes
[superoxide (SOD), peroxide (POD),
catalase (CAT), glutathione physiological
and molecular mechanisms of BR under
different stress conditions.
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Proline, an amino acid, plays a highly
beneficial role in plants exposed to
various stress conditions. Besides acting
as an excellent osmolyte, proline plays
three major roles during stress, i.e., as a
metal chelator, an antioxidative defense
molecule and a signaling molecule.
Review of the literature indicates that a
stressful environment results in an
overproduction of proline in plants which
in turn imparts stress tolerance by
maintaining cell turgor or osmotic
balance; stabilizing membranes thereby
preventing electrolyte leakage; and
bringing concentration of reactive oxygen
species (ROS) within normal ranges, thus

preventing oxidative burst in plants.
Reports indicate enhanced stress
tolerance when proline is supplied

exogenously at low concentration (Hayat
et al. 2012).

Jasmonic acid (JA) as an endogenous
growth regulator that play an important
roles for regulating the stress response
(Creelman and Mullet, 1997). The
amelioration of chilling injury and osmotic
stress by JA have also been reported on
rice, peanut seedlings and cucumbers
(Wang, 1999). Many researches indicated
that JA significantly reduced chilling
injury of mango (Gonzéalez-Aguilar et al.,
2000), tomato (Ding et al., 2001).
Additionally, field applications of JA
obviously decrease climacteric ethylene
production of peach fruits at harvest by
regulating activities of enzymes in cell
wall metabolism (Ziosi et al., 2008) and
reduce ion leakage in strawberry
(Gonzalez-Aguilar et al., 2006).

Silicon is a beneficial element for
cereal and grass. High deposition of Si in
tissues enhances the strength and rigidity
of the tissues (Neethirajan et al., 2009).
Silicon application enhances water
efficiency, chilling and salt tolerance and
resistance to pathogens and heavy metals
(Guo et al., 2007) and (He et al., 2010).
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The present study was undertaken for

several objectives:

1- To evaluate the physiological and
biochemical impact of low temperature
on tomato plants.

2- To investigate the potentialities of
nano biostimulators contained CPPU,
BR, Proline, also Si on a number of
physiological aspects of tomato plants
grown under chilling temperature to
determine the extent to whis these
nano biostimulators can ameliorate the
adverse effects of chilling temperature.

3- To study the physiological behavior
and chemical constituents of tomato
plants, as well as tomato yield and its
guality under these conditions.

MATERIALS AND METHODS

The present investigation was carried
out in private farm of Khatatba Minufiya
Governorate during the two successive
winter seasons of (2016, 2017) and (2017,
2018) to investigate, the effect of some
nano inducers for induction tomato yield
and its quality under this condition.

Tomato seedlings of hybrid 448 F1 were
obtained from Syngenta Company, Egypt,
and were transplanted on the 14" and 15"
of October in the first and the second
seasons, respectively in ridges of 180 cm
apart, in hills, 45 cm between hills on one
side of the ridges.

The experimental units were divided
into plots of equal area, each plot was 1.8
x 9 m= 16.2 m2 All the agriculture
practices were at the recommendation of
Ministry of Agriculture, Egypt.

Treatments:

Foliar application of different
treatments were carried out at 45 days
after transplanting and repeated every 15
days intervals, the total number of foliar
application reached 3 times.
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The experiment treatments were
designed as a complete randomize design
with four replication and included seven
treatments which were contain different
nano biostimulators as the following:-

1. Control (Tap water).

Nano biostimulators; (NB1) (0.5 mI\ L)
Nano biostimulators, (NB2) (1.0 mI\ L)
Nano Jasmonic Acid (JA1) (5 ppm)
Nano Jasmonic Acid (JA2) (10 ppm)
Nano Silicon (Si1) (2 mM)

Nano Silicon (Si2) (3 mM)

NogakwnN

Nano biostimulator (NBi, NB2) which
contains [CPPU 0.2% + Brassinolide 5% +
proline 1% + amino oligosaccharin 2%].
This compound (Nano biostimulators;, 2)
was obtained from Zhengzhou Zheng Shi
Chemical Co., Ltd. China.

Nano Jasmonic Acid (JAi, JA2) was
obtained from Prof. Dr. Miersch at Plant
Biochemistry. Martin Lather University, D.
Giessen, Germany.

Nano Silicon (Sii, Siz) was obtained
from Bio Nano Technology Com., Egypt.

Generally, the nanoparticles size less
than 50 nm.

Sampling:

During the growth period of both
seasons (2017, 2018), three samples were
taken randomly from each treatment after
75 days from transplanting. At sampling
time, three plants were randomly taken
out carefully from each replicate for
vegetative growth and chemical analyses.

Data recorded:

1- Growth parameters

1.1- Plant height /cm

1.2- Leaves fresh and dry weight (g)

1.3- Branches fresh and dry weight (g)

1.4- Total plant fresh and dry weight
(leaves+ branches) (g)

1.5. Leaf area (LA) (Cm?).

1.6. Chilling Injury index (CI) %.

In tomato plants, chilling injury
manifested as intensity of leaf purpling,
therefore, ClI was scored according to
external skin purpling as; minor damage
effect (20-25% purpling lesion, PL); hard
damage effect (>25% PL) and Healthy
plants (no symptom). The severity of PL
was calculated according to Mirdehghan
and Ghotbi (2014) by the following
formula:

Clindex (%)=
No. of plants at the PL level/plot
X 100

Total No. of plants in the treatment/plot

2. Biochemical parameters:
2.1. Chlorophyll content:

A vegetative samples from the fifth leaf
from the growing tip were taken and
extracted with 85% aqueous acetone and
determined spectrophotometrically as
reported by Wettstein (1957) using the
wave length of 662 and 644 nm for Chl. a
and b, respectively.

Chlorophyllaconc.=9.784 X Asss - 0.990 X Asar.
Chlorophyll b conc.=21.426X Asa7 - 4.650X Asea.

2.2- Determination of Antioxidant
Enzymes Activity:

2.2.1- Poly Phenol oxidase enzyme
activity (PPO): The enzyme activity was
measured as the change in the
absorbance per minute at 495 nm, and
expressed as after 45 min/gm Fr.wt. The
methods which described by Broesch
(1954) were used.

2.2.2 Peroxidase activity (PO): Peroxides
activity was measured according to the
method described by Fehrman and
Dimond (1967). The difference in optical
density between the reaction mixture of
the activity and that of the control was
taken as a measure of the activity of the
reaction. Enzyme activity was expressed
as OD after 2 min/g Fr.wt.
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2.2.3- Catalase activity (CAT): Catalase
activity was determined as described by
Bach and Oparin (1968).

2.3. Determination of proline content:
Proline content was measured by using 5-
sulphosalysilic acid solvent and acid
ninhydrine regent colour intensity was red
and measured at 520 nm using
colorimeter according to the method of
Bates et al. (1973).

2.4. Total sugars (TS): Total soluble
sugars concentration was determined
following the method of Dubois et al.
(19586).

3- Yield and its components:

3.1. Fruit set percentage: was measured
by randomly chose four plants from each
plot and average fruit set of the clusters
number 3 and 4 on the main stem was
calculated according to the formula:

Fruit set % =

No. of set fruits /cluster
X 100

Total No. of formed flowers / cluster

3.2. Early yield: It was considered as the
sum of the weight of fruits picked at the
first three pickings.

3.3. Total yield: It was determined as the
sum of the weight of all harvested fruits

that picked at the red ripe stage
throughout the entire season.
3.4-Fruit quality: The following fruit

qualities were assessed in ten fruits

chosen randomly with four replicates/
treatment.
3.4.1. Total soluble solids (TSS):

measured by using an Abbe hand
refractometer

3.4.2. Fruit firmness: determined in the
fruits using pressure tester.

3.4.3. Vitamin C: Vitamin C content was
determined in fruit juice using 2, 6-
dichlorophenolindo-phenol blue dye as
mg ascorbic acid per 100 ml juice,
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A.O.A.C. (1980), and expressed as mg/100
ml juice.

4. Statistical analysis:

The collected data for both years were
statistically analyzed using Costat
Software (1985) and treatment means
were compared by using L.S.D test
according to the procedure outlined by
Snedecor and Cochran (1972).

RESULTS AND DISSECTION
1- Growth parameters:

Effect of chilling stress on tomato
growth was studied as influenced by
some nanobiostimulators, data recorded
in (Table, 1) at two different seasons. As
compared to tomato plants, chilling
reduced plant height, number of leaves,
number of branches, leaves fresh weight,
branches fresh weight, leaves and
branches dry weight compared to the
nanobiostimulators treatments.
Significant highest results in the growth
parameters recorded with NB: flowed by
NB.which were best than the chilled
plants. Si; treatment flowed by Si» were
best than the chilled plants only but still
lower than NB; in both seasons.

It can be noticed in (Table, 1) that NB1
recorded a highly significant increases in
leaves Fr.wt (101%), total Fr.wt. (222%)
and total Dr.wt. (217%) compared to its
control in the first season, where were
174%, 249% and 265% when compared to
its control in the second season,
respectively.

LA of tomato plants was enhanced
significantly by treating plants by NB1 under
chilling condition. The increases were by NB:1
(161 %), Si1 (122 %) and JAz (109 %) when
compared with the chilling tomato plants in the
first season. Meanwhile the increases in LA by
Si2 (117%) and NB2 (94 %) when compared to
chilled tomato plants in the first season (Table,
2 and Fig., 1).



A. A. Midan, et al.,

OT'8ST | 9T9C¢T | dS8E |9 T'TE|[D296TT|900G6| 2 /LSST | 208CT |2q0v| d 08 | A LTTT| 2 006 | 9 9L 2¢. IS
Q¥'29T | 99'6ZT | dTOV | d Z'¢€|0€¢cT|a0V'L6|dcZ8ST | dS6CT | ALvy | 4 08€ | AGETT | 94 ST6 | d 8. q v. Hs
PTTIST | PTCCT| OTVE | P 90E |POLTT|POST6| PSEYT | PSSCT | 9 SEY |99 0LE| O000T | 2 G688 | P GL 2¢L evr
JE€'ECT | 16°L0T | PTTE |} 9LC | $2°¢6 |4 0E°08| JT6ET | JGPTT | O96E |0 SGPE| 9G66 | P 008 | ® V. p oL wr
STVET | @0V¥IT | POCE | ® 06 |TCOT|®00G8|°00FT |902ZT | 2007 D2 0SE|92000T | P 0.8 | P SL 2¢L ¢dN
BEEGT |V VST | BTy | 20V |BCOVT |€CVIT|€VIBT [ B09FT | 6GG | © 0TV | BGGCT | © OG0T | © G8 e G8 TdN
bzeg | 6oT9 | 96T |6 0GT | B0€9 |6o09r| Bove | B89 | POEZ | P 28T | POT9 | @ 00S | 429 | @ 1S U0
Z UOSBaS | T UOSkaS |z UoSeaS|T UoSeas|z UOSBaS|T UOSRAS[Z UOSLIS|T UOSEaSiZ UOSeIS|T UOSBaS[Z UOSBAS| T UOSEaS g UOSeas|T uoseas

sjuawieal]
(6) (6) (6) (wo)
(B6) M -1@ 1oL | Im “ug sayouelg | m ug sanea | (B) wmtapeiol | uy sayoueag | (B) wwm g sanea | 1ybiay lueld

:TUOSEaS) UONIPUOD ainyeladwal Mo Japun umoib siue|d orewo] Jo Yyimolb aAlte1alfan uo sioje|nwilsoiqoueu awos Jo 19913 (T) ajgel

"(8T0¢/LT0Z g uoseas pue /T0Z/9T0C

164



Effect of some nanobiostimulators to alleviate the adverse effects of chilling ......

Table (2): Effect of some nanobiostimulators on leaf area and chilling injury (CI)
percentage of tomato plants grown under low temperature condition (season1:
2016/2017 and season 2: 2017/2018).

LA cm? Seasonl Season?2
Treatments Seasonl | Season2 Healthy Healthy
Cl% Cl %
plants% plants%
Cont. 556.4 g 762.0g 65 a 35f 60 a 40e
NB1 1450.3 a 1768.3 a 10f 90 a 10e 90 a
NB- 1079.5e 1296.7 e 60 b 40e 55b 45d
JA, 1019.8 f 1115.2 f 60 b 40e 55b 45d
JA, 1162.1d 1415.1d 30c 70d 25¢c 75 c
Sip 1237.0b 1479.2 b 15e 85hb 15d 85hb
Siy 1206.5¢c 1446.6 c 20d 80c 15d 85b
2000 -
1500 -
H LA cm2 Seasonl
1000 -
OLA cm2 Season2
500 -
0 - T T T T T T —
Cont. NB1 NB2 JA1 JA2 Sil Si2
100 -
80 11 ]
W Seasonl Cl %
60 1 OSeasonl Healthy plants%
40 - m Season2 Cl %
20 OSeason2 Healthy plants%
Cont. NB1 NB2 JA1 JA2 Sil Si2

Figure (1): Effect of some nanobiostimulators on leaf area and chilling injury percentage
of tomato plants grown under low temperature condition (seasonl: 2016/2017

and season2: 2017/2018).

Results in the present work indicated
that chilling stress had a clear negative
impact on various vegetative growth
criteria such as: shoot length, fresh and
dry weight, leaf area of tomato plants
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(Tables 1, 2). Chilling also, resulted in
appearance of necrotic spots, burning of
margins, wilting and deformation of
leaves. In the present investigation data of
chilling injury index (Cl) which was scored



A. A. Midan, et al.,

according to external skin purpling as
minor and hand effects comparing healthy
plants, the data recorded in (Table, 2)
illustrated that chilling injury was
maximum value in chilled plants (65% and
60% in the first and the second seasons,
respectively). The lowest chilling injury
index record by treating tomato plants by
NB1, and Sis, 2 (10%, 15%,30%) compared
to untreated plants in the first season.
This result might be due to the effect of
CPPU, BR, Si and JA which significantly
effective in increasing shoot growth
compared the control plants (chilled
plants).

Several investigators observed that
cold stress induced several
morphological symptoms such as a
necrosis, desiccation, tissue break-down
and wilting (Solank and Sharma 2008),
reduced leaf expansion and growth
retardation (Rymen et al. 2007) in different
plant species such as P. vulgaris,
Brassica napus, Zea mays and
mangosteen tree (Rymen et al., 2007 and
Rejab et al., 2008).

Generally, exposure to cold
temperature affects crop growth and
development through enhancing the
production of ROS leading to progressive
damage, cell death and growth
suppression (Ruiz-Lozano et al. 2012).
Also the decreases in vegetative growth
and dry matter could be attributed to the
inhibition of the main physiological
processes and reducing the uptake of
nutrients and water (Thakur and Nayyar
2013).

Upon spraying of tomato seedlings
grown at low temperature (chilling) by NB1
(Table, 1) improved the growth criteria by
increasing shoot length, leaf expansion,
fresh and dry weights. Similar results
were obtained by Anwar et al. (2018) who
mentioned that brassinolides are a group
of phytohormones that regulate a wide
range of biological processes that lead to
tolerance of various stresses by alteration
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the negative effect of low temperature and
chilling stress by increasing chlorophyll
contents, carbohydrates which inducing
changes in defense enzymes (Mo et al.,
2016) and Shu et al., 2016). Brassinolides
alleviate the adverse effect of different
stress conditions and regulate the
defense system by regulating the defense
genes in cucumber (Li et al., 2013). Wang
and Zeng (1993) reported that
brassinolides were shown to have
positive effects on eggplant, cucumber
and maize under chilling stress, also
proline which plays a highly beneficial
role as an osmolyte, and helps to stabilize
subcellular structures and acts as a metal
chelator. Proline (presented in NB1, NB>)
may also activate the cellular antioxidant
system and scavenge the reactive oxygen
species (ROS) (Zouari et al. 2019).

Nimbolkar et al. (2016) found that
spraying plants by CPPU at 10 ppm was
found most effective in significantly
increasing in shoot growth compared to
the control pear plants, meanwhile CPPU
at 5 ppm recorded a maximum increase in
number of leaves, leaf area. Morover EL-
Shraiy Amal and Hegazi Amira (2010) cited
that application of CPPU (10 and 20 ppm)
showed an improvement in plant growth
as indicated by plant height, leaves
number, branches number, plant fresh
and dry weights.

Sorial Mervat et al. (2010) reported that
foliar application of JA at 2.4 and 4.8 mM
under water stress decreased plant height
and leaf area, whereas increased dry
weight of leaves and stems, the highest
JA concentration was more effective in
this respect. Abd-Alla et al. (2016) proved
that application of MJ to chilled stressed
faba bean resulted in enhanced growth
and hence biomass accumulation there by
depicting the active involvement of JA in
cell division and hence organ differention.

These nanostimulatores recorded a
maximum increase in number of leaves,
leaf area and regulate the defense system
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by regulating morphological,
physiological and biochemical
characteristics which alleviate the

negative effects of low temperature and
chilling stress by enhancing chlorophyll
content, carbohydrates which inducing
changes in defense enzymes (Shu et al.,
2016; Anwar et al., 2018; Li et al., 2013 and
Nimbolkar et al., 2016)

2. Biochemical Parameter:
2.1. Chlorophyll Content:

In the present investigation data of
chlorophyll content were recorded in
(Table, 3), it was observed that there was
a significant reduction in chlorophyll (a+
b) content of chilled stress tomato leaves.
Plants treated with NB; and Si; > showed
significant increase compared to chilled
plants, meanwhile JA treatments under
studying were less than NBj, Sii2 and
more than chilled plants. The same trend
was observed in the both seasons.

Low temperature (chilling stress)
inhibits the photosynthesis of plants by
affecting chlorophyll components.
Yildiztugay et al. (2017) cited that low
temperature (chilling) reduced
photosynthetic activity. The decrease in
chlorophyll under chilling stress is mainly
as a result of damage to chlorophyll
caused by active oxygen species (ROS).
However, under chilling stress conditions
there will be degradation in pigment
compositions, which induce decrease in
chlorophyll content, (Suzuki et al., 2012).
Meanwhile, brassinosteriods (presented
in NB1) increased chlorophyll, this may be

alleviate the negative effect of low
temperature and chilling stress by
increasing chlorophyll content which

inducing changed in defense enzymes. In
addition (Nimbolkar et al., 2016) cited that
spraying pear plants by CPPU (presented
in NB1) at 5 ppm increased chlorophyll a
and b.
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JA application protect the membranes
from damage and subsequently protect
chloroplast membrane which increase
chlorophyll content (Sorial Mervat et al.
2010 and EI-Shraiy Amal and Hegazi
2010). Also, Hanaka et al. (2015)
mentioned that the protective role of MJ
treated phaseolus coccines plants have
significant improvement in chlorophyll
pigments.

Moreover, Sonali Jana and Jeong
(2014) proved that foliar spray of silicon
has been shown to enhance plant
metabolism and leaf chlorophyll content
and mitigate nutrient imbalance in plants.

2.2. Antioxidant Enzymes:

Datarecorded in (Table, 3) showed the
changes in antioxidant  enzymes
(polyphenoloxidase (PPO), peroxidase
(PO) and catalase (CAT) enzymes). In
chilled stress plants PPO activity, was
lowered as compared to the sprayed
plants by nanobiostimulatores. Foliar
application of NB; under chilling stress
condition resulted in significant increase
in enzyme activity, in both seasons. Sii>
treatments under chilling stress followed
the NB: in enhancing significantly PPO
activity in both season .

Regarding to PO activity, it can be
noticed that the same trend recorded in
PPO. There was a significant increase in
PO activity with NBiand Si; treatments
were by 132%, and 51% when compared to
chilled plants in the first season. The
same trend was observed in the second
season.

In this respect, CAT enzyme activity
recorded the lowest value in plants under
chilling stress compared to the treated plants
with nanobiostimulators materials under
chilling stress, data presented in (Table, 3).
The values of CAT enzyme was highly
significant increased by NBifollowed by Sii.
The increases were by 116 %, and 39%
compared to chilled
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plants, respectively in the first season.
The same trend was observed in the
second season. In this concern,
Yildiztugay et al. (2017) reported that low
temperature (5° c) stress caused an
increase in activities of ascorbate
peroxidase, glutathione reductase and
NADP oxidase. Meanwhile, Rivero Rosa et
al. (2001) cited that chilling stress
occurred a lower peroxidase and poly

phenol oxidase activity. Moreover,
Sharma (2016) mentioned that BR
increased the antioxidant enzyme

activities indicating efficient scavenging
of ROS in stressed tomato plants. Zhang
et al. (2008) indicated that BR treatment
promoted the activity of enzymes. He et al.
(2010) and Liang et al. (2008) reported that
the protective role of Si in plants exposed
to cold stress conditions in many plants
and this may due to increase the
antioxidant activity in winter wheat and
cucumber leaves. It is long lived and
capable of crossing plant cell membranes

and there by acts as diffusible and
relatively last signal. H.O, has been
considered as an essential signal

involved in plant defense against biotic
and abiotic stresses (Foyer and Noctor
2003). Data of this experiment clearly
indicate that nanobiostimulatores under
studying protect antioxidant enzymes and
to guard protein and nitrogen content
along with rubisco activity for recovering
photosynthetic rate under stress (Sadia
Sadique, 2017).

2.3. Proline content;:

The data in (Table, 3) revealed that
proline content increased under chilling
conditions. Moreover, treatments with
different nanobiostimulators recorded
highly significant increases in proline
content under chilling conditions. The
most effective treatment in increasing
proline content was NBithen Sii and Si;
when compared to the chilled plants.
Proline content was increased by 355%,
235% and121% compared to the chilled
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tomato plants
first seasons.

only, respectively in the

The same trend was
observed in the second season.
Moreover, the other nanobiostimulators
materials i.e NBj, JA; and JA, also
recorded a significant increase in proline
content compared with the chilled plants,
in both seasons. Many studies have
provided that the exogenous application
of proline (presented in NBi, NB»)
provided better protection against
different abiotic stresses such as salinity,
drought and extreme temperature, etc.
Under these stressful environmental
conditions, exogenous applications of
proline have been shown to increase the
endogenous levels of proline and
compatible  solute  which  provide
protection to cells through osmotic
adjustment, in addition help to maintain
cellular ionic homeostasis. Moreover,
exogenous application of proline at low
concentration increased tolerance
towards cold stress (Hayat et al., 2012). In
the present study, Brassinolides
treatment (presented in NB3:) obviously
improved significant increase in proline
resulted osmotic adjustment to a great
extant.

Mitigation of oxidative stress by Si
treatments has been related to
accumulation of antioxidants (phenolics,
proline and ascorbic acid) that under low
temperature stress in wheat (Liang et al.,
2008) and cucumber (Moradtalab Narges
et al., 2018). Review of literature indicated
that stressful environment result in an
over production of proline in plants which
increase stress tolerance by maintaining
osmotic balance, stabilizing membranes
thereby preventing electrolyte leakage
and bringing (ROS) within normal ranges
thus preventing oxidative burst in plants
(Hayat et al., 2012).

2.4. Total sugars:

Data revealed that chilling conditions
enhanced accumulation of total soluble
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sugars (Table, 3). Moreover application of
NBi1, and Siip, treatments under chilling
conditions significantly increased total
soluble sugars which increased by 34%,
16% and 10% when compared to the
chilled plants only in the first season,
meanwhile, were39%, 17% and 9% in the
second season, respectively.

Sugars play a control regulatory role in
many vital processes of photosynthetic
plants besides saving the energetic
function and considered as important
sighals that regulate plant metabolism
and development. Carbohydrate
accumulation at low temperature may
explained through the activation and
enhanced expression of the enzymes
involved in the sucrose synthesis
pathways and those of Calvin cycle in
particular, the cytosolic enzymes (Couee
et al., 2006). Moreover they might protect
plant cell membranes during cold.
Induced dehydration, replacing water
species and by acting as hydroxyl
scavengers and so, increased membrane
stabilization (Couee et al., 2006 and
Ruelland et al., 2009).

Resulted of current study (Table,3)
showed that the low concentration of NB;
and NB: increased significantly soluble
sugars of tomato plants grown under
chilling condition compared to their
respective untreated plants. Treatment
with  NB: which contains CPPU,
Brassinolide and Proline, increased
significantly total sugars of chilled leaves.
It is mentioned that the positive effects of
CPPU at 20 ppm was correlated with
significant increase in total soluble
sugars in potato leaves (El-shraiy Amal
and Hegazi, 2010). Moreover Sorial Mervat
et al. (2010) cited that exogenous JA
application generally decreased total
soluble sugars compared to untreated
plants. (Liang et al., 2008 and Moradtalab
Narges et al., 2018) reported the protective
role of Si in plants exposed to cold stress
conditions in many plants, the mechanism
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of Si in promoting the accumulation of
sucrose in leaves (Neethirajan et al.,
2009).

3. Yield and its components:

It is also observed that treatments
considerably differed among of these in
their effects since great enhanced fruits
set %, was obtained by NB; followed by
NB», while the increases by, NBiwas (78%)
and (83%) compared to their control
chilled plants only in the first and the
second seasons, respectively. In this
respect it was clear that Si; also enhanced
the fruits set %, parameter followed by Si»
and then JA, compared to the chilled
plants (Table 4 and Fig., 2).

It is quite clear from (Table 4 and Fig.,
2) that early and total yield per feddan
were significantly increased as the results
of all applied treatments under studying
compared with the chilled tomato plants
only, in both seasons. On the contrary, the
chilled plants (control) plants were
strongly stressed. It is also observed that
treatments considerably differed among
of their effects since great enhanced early
and total yield per feddan were obtained
by NBi, while the increase were by 48%
and 37%, where were 40%, and 28% for Si;
compared to their control chilled plants
only in the second season, respectively.
The same trend was observed in the first
season. In this respect, it was clear that
Si; also enhanced the above parameters
followed by Si» and JA; compared to the
chilled plants.

The explanation of yield increases of
stressed, plants after application of
proline (present in NBi, NBj) has been
proposed to the partly located on the
increased net photosynthesis, decreased
rate of photorespiration, conductance,
induced more efficient gas exchange
(Makela et al., 1998) and thus better
availability of carbon for photosynthetic
processes (Makela et al., 1999), water use
efficiency (Bergmann and Eckert 1984)
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Figures (2): Effect of some nanobiostimulators on fruit set and tomato early yield and total
yield grown under low temperature condition (seasonl: 2016/2017 and

season2: 2017/2018).

and increased chlorophyll content in
plants (Whapman et al., 1993). Moreover
proline protects and activates the proteins
of photosynthetic reactions
(Papageorgiou and  Murata, 1995).
Exogenous application of proline also
results in higher yield in the greenhouse
and field, mainly due to improved net
photosynthesis and growth rate (Makela
et al., 1998 and Rezaei et al., 2012).

The high fruit set percentage as well as
early and total yield might be owing to the
optimum application of CPPU with
Brassinolide (presented in NB;) and Si as

172

afoliar feeding, the obtained results are in
conformity with those previously reported
by (Kabeel et al., 2005 and Guirguis et al.,
2003). Moreover Epstein (1999) proved
that, maintenance of leaves as a result of
silicate application, which increase in the
photosynthesis of the canopy and
consequently increases in growth and
yield. Ismail et al. (2014) stated that silicon
supply improved the structural integrity of
crops and promoted the increase of water
relation in leaf tissue which a result of
higher growth rate under stress
conditions.
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The increasing in tomato fruit size as a
result of CPPU application is due to the
increase in sink strength for accumulating
nutrients such as K, this data agreement
with the finding in berry by (Zhenming et
al., 2008). Moreovere, application of BR
gave positive effect in cluster weight may
be due to beneficial effect on increasing
cell division and cell elongation as well as
their great role in activating the
biosynthesis of proteins (Fawzi and Hafez,
2004). These results are in agreement with
those (Luan et al., 2013) regarding the
potential role for brassinolide growth
regulators as a fruit production
management especially considering the
results obtained regarding berry
coloration. Moreover, Han and Lee (2004)
demonstrated that using cytokinins in the
vineyard was found to be effective in
increasing berry size, pedicel thickness,
and the amount of cuticle, delaying
maturity, reducing anthocyanin content,
and enhancing firmness.

It can observe in the present results in
(Table 4 and Fig., 2) that the fruit quality
like Firmness, TSS and Vit. C. It can be
observed that the highest and significant
values were recorded by application of
NB1, which recorded 38%, 112% and 29%
compared to the control (chilled plants)
respectively in the first season, and 36%,
105% and 26% in the second one.
Moreover, Si1 was significantly enhanced
the above mentioned parameters which

were by 19% , 60% and 19% when
compared to the control plants,
respectively in the second season.
Meanwhile JA; significantly increased

Firmness by 15%, TSS by 44% and Vit. C
by 4% when compared to their control
fruits in the second season. The same
trend was recorded in the first season.

Mousawinejad (2014) showed that,
CPPU (presented inNB;) application on
tomato plants had highly significant
increases on fruit mass, volume density,
Length and width. Moreover, the effects of

173

CPPU on the fruit biochemical
characteristics such as sugars, titratable
acids and vitamin C content were not
significant some studies have proven the
efficacy of CPPU as a PGR to improve the
fruit development some seedless and
seeded grape cultivars in field conditions.
For example, in a study conducted by
Nimbolkar et al. (2016), they showed that
CPPU resulted in a significant increase in
the mass and size of berry and cluster.

Lolaei et al. (2013) reported that straw
berries treated with MJ had higher soluble
solids content. Moreover the effect of MJ
was significant the yield and growth of
strawberry plants. Lu Maria et al. (2016)
proved that Si supplementation using
nanosilica powder is the most effective in
improving the growth characteristics and
yield of tomato. In addition, only
nanosilicon significantly increased the
average fruit yield of tomato by 35% as
affected by the 23% increase in the
average number of fruit per plant.

It can be concluded that, the observed
results may show that tomato plants

subjected to chilling stress recorded
highly significant reduction in their
growth and production parameters.

Application of nanobiostimulators like
NB: (which contains BR, CPPU, Proline)
and silicon which exerted the most
protecting effect in alleviation of chilling
injury with low concentration which
reflect a good performance of tomato
plants under chilling with high quantity
and good quality of yield. Nanoparticles
significantly increase plant dry weight,

level of organic compounds such as
proteins, chlorophyll, sugars and
phenols. Silicon nanoparticles have

unique physicochemical attributes and
they enter into plants and impact the
metabolism of plants, like wise improve
plant growth and yield under pressure
environmental conditions. Nanofertilizers
could soon offer a technological solution
to the nutrient-loss problem, thereby
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aiding technologically-minded farmers
and subsistence farming. Nanofertilizers
refer to nanoscale-dimension products
that deliver nutrients to crops. These
nutrients can be i) encased inside
nanomaterials for example nanotubes or
nanoporous materials, ii) covered with a

thin defensive polymer film, or iii)

conveyed as particles or emulsions

(Sadique Sadia,2017).
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